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De Novo Drug Design (DNDD) in the Pipeline

Pushkaran, A.C., Arabi, A.A. From understanding diseases to drug design: can 
artificial intelligence bridge the gap?. Artif Intell Rev 57, 86 (2024). 
https://doi.org/10.1007/s10462-024-10714-5 

● Lead Identification
○ Circumvents the need for 

exhaustive sampling of large 
libraries

● Lead Optimization
○ Efficient algorithms for 

multi-objective optimization of 
multiple properties
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https://doi.org/10.1007/s10462-024-10714-5


The Case for De Novo Drug Design
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Kirchmair et al., 8ADD Olomouc, 
2025, 
https://www.kfc.upol.cz/wp-content/
uploads/2025/01/FOR-PUBLICATI
ON_kirchmair_introduction-to-chem
informatics.pdf 

https://www.kfc.upol.cz/wp-content/uploads/2025/01/FOR-PUBLICATION_kirchmair_introduction-to-cheminformatics.pdf
https://www.kfc.upol.cz/wp-content/uploads/2025/01/FOR-PUBLICATION_kirchmair_introduction-to-cheminformatics.pdf
https://www.kfc.upol.cz/wp-content/uploads/2025/01/FOR-PUBLICATION_kirchmair_introduction-to-cheminformatics.pdf
https://www.kfc.upol.cz/wp-content/uploads/2025/01/FOR-PUBLICATION_kirchmair_introduction-to-cheminformatics.pdf


De Novo Drug Design: Yesterday and Today
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combine

Pharmaceuticals 2024, 17(2), 161; https://doi.org/10.3390/ph17020161

https://doi.org/10.3390/ph17020161


When and How?
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● in pocket generation1,2 
○ fragment-based vs. atom-based

● stable diffusion3

1. https://cheminformantics.blogspot.com/2024/12/structure-aware-generative-molecular.html?m=1
2. https://www.biosolveit.de/application-academy/chemical-space-docking/ 
3. https://github.com/arneschneuing/DiffSBDD 
4. Liu X, IJzerman AP, van Westen GJP. Computational Approaches for De Novo Drug Design: Past, Present, and Future. Methods Mol Biol. 2021;2190:139-165. doi:10.1007/978-1-0716-0826-5_6
5. Bernatavicius A, Šícho M, Janssen APA, Hassen AK, Preuss M, van Westen GJP. AlphaFold Meets De Novo Drug Design: Leveraging Structural Protein Information in Multitarget Molecular Generative 

Models. J Chem Inf Model. 2024;64(21):8113-8122. doi:10.1021/acs.jcim.4c00309
6. Bernatavicius A, Šícho M, Janssen APA, Hassen AK, Preuss M, van Westen GJP. AlphaFold Meets De Novo Drug Design: Leveraging Structural Protein Information in Multitarget Molecular Generative 

Models. J Chem Inf Model. 2024;64(21):8113-8122. doi:10.1021/acs.jcim.4c00309

● in pocket generation1,2 
○ fragment-based vs. atom-based

● 2D ligand-based generation with 3D 
structure scoring1 

● 2D/3D ligand-based generation with scoring4

○ QSAR
○ Pharmacophore Model
○ Shape Similarity
○ …

● “multi-modal” generative models5,6

● DEL and combinatorial library design
● make-on-demand libraries

https://cheminformantics.blogspot.com/2024/12/structure-aware-generative-molecular.html?m=1
https://www.biosolveit.de/application-academy/chemical-space-docking/
https://github.com/arneschneuing/DiffSBDD


In Pocket 3D Generation

• Oldest methods with similar approaches appearing over the years1

• Employ genetic algorithms and heuristics2,3 → obvious and transparent solution to the problem
• generative deep learning can be used as well4,5

• Downsides:
- Library of fragments/synthons is required -> limits search space, but often necessary due to complexity in 3D
- DL models are black boxes + produced geometries and structures are often synthetically or physically impossible
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1. J. Med. Chem. 1993, 36, 12, 1700–1710
2. Yuan Y, Pei J, Lai L. LigBuilder V3: A Multi-Target de novo Drug Design Approach. Front Chem. 2020;8:142. Published 2020 Feb 28. doi:10.3389/fchem.2020.00142
3. https://www.biosolveit.de/application-academy/chemical-space-docking/
4. J. Med. Chem. 2022, 65, 13, 9478–9492 
5. Powers AS, Yu HH, Suriana P, Koodli RV, Lu T, Paggi JM, Dror RO. Geometric Deep Learning for Structure-Based Ligand Design. ACS Cent Sci. 2023 Nov 17;9(12):2257-2267. doi: 10.1021/acscentsci.3c00572. PMID: 38161364; PMCID: PMC10755842.
6. J. Chem. Inf. Model. 2024, 64, 6, 1794–1805

Fig 1: LigBuilder2 Fig 2: Chemical Space Docking3 Fig 3: FRAME5

https://www.biosolveit.de/application-academy/chemical-space-docking/


2D Graph Generation
• By far the most explored and abundant set of 

methods
• Fragment growing or joining applicable to 2D 

graphs as well
- GraphGA2

- CReM3

• Deep learning models most popular recently
- Recurrent Neural Networks (RNNs)1,4

- Variational Autoencoders (VAEs)1,4

- Generative Adversarial Networks (GANs)1,4

- Normalizing flow models4

- Transformers5

- …
• Reinforcement Learning (RL)1
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1. Liu X, IJzerman AP, van Westen GJP. Computational Approaches for De Novo Drug Design: Past, Present, and Future. Methods Mol Biol. 2021;2190:139-165. doi:10.1007/978-1-0716-0826-5_6
2. Jensen JH. A graph-based genetic algorithm and generative model/Monte Carlo tree search for the exploration of chemical space. Chem Sci. 2019 Feb 11;10(12):3567-3572. doi: 10.1039/c8sc05372c. PMID: 30996948; PMCID: PMC6438151.
3. Polishchuk, P. CReM: chemically reasonable mutations framework for structure generation. J Cheminform 12, 28 (2020). https://doi.org/10.1186/s13321-020-00431-w
4. Bilodeau C, Jin W, Jaakkola T, Barzilay R, Jensen KF. Generative models for molecular discovery: Recent advances and challenges. WIREs Comput Mol Sci. 2022; 12:e1608. https://doi.org/10.1002/wcms.1608
5. Šícho M, Luukkonen S, van den Maagdenberg HW, Schoenmaker L, Béquignon OJM, van Westen GJP. DrugEx: Deep Learning Models and Tools for Exploration of Drug-Like Chemical Space. J Chem Inf Model. 2023;63(12):3629-3636. doi:10.1021/acs.jcim.3c00434

Fig 1: Overview of Common DL Architectures1.

https://doi.org/10.1186/s13321-020-00431-w
https://doi.org/10.1002/wcms.1608


Recurrent Neural Networks (RNNs)
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1. Liu X, Ye K, van Vlijmen HWT, IJzerman AP, van Westen GJP. An exploration strategy improves the diversity of de novo ligands using deep reinforcement learning: a case for the 
adenosine A2A receptor. J Cheminform. 2019 May 24;11(1):35. doi: 10.1186/s13321-019-0355-6. PMID: 31127405; PMCID: PMC6534880.

2. https://www.geeksforgeeks.org/rnn-vs-lstm-vs-gru-vs-transformers/ 

● RNNs have a notion of 
‘memory’ using specialized 
neurons
○ GRU or LSTM cells

● for most tasks in NLP domain 
surpassed by transformers, but 
still prevalent in de novo drug 
design
○ RNNs generally fail on 

processing longer 
sequences (short memory)

token vocabulary

https://www.geeksforgeeks.org/rnn-vs-lstm-vs-gru-vs-transformers/


Variational Autoencoders (VAEs)
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R. Wei and A. Mahmood, "Recent Advances in Variational Autoencoders With Representation Learning for Biomedical Informatics: A Survey," in IEEE Access, vol. 9, pp. 4939-4956, 
2021, doi: 10.1109/ACCESS.2020.3048309.

● Enable integration of (multi-)objective optimization into the generative process



Generative Adversarial Networks (GANs)
• Specialized training strategy that introduces a discriminator network to distinguish “real” and “fake” instances
• Can be combined with various optimization strategies for (multi-)objective optimization
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Molecules 2020, 25(14), 3250; https://doi.org/10.3390/molecules25143250

J. Chem. Inf. Model. 2018, 58, 6, 1194–1204

https://doi.org/10.3390/molecules25143250


Reinforcement Learning (RL)
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https://monidp.medium.com/self-driving-car-with-reinforcement-learning-in-unity-88458d13fcd1 

https://en.wikipedia.org/wiki/Reinforcement_learning 

policy = sequence of actions the agent takes in the environment (goal = select best policy in terms of reward)

https://monidp.medium.com/self-driving-car-with-reinforcement-learning-in-unity-88458d13fcd1
https://en.wikipedia.org/wiki/Reinforcement_learning


Reinforcement Learning in Molecular Generation
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Testing the Limits of SMILES-based De Novo Molecular Generation with Curriculum and Deep Reinforcement Learning., Maranga Mokaya, Fergus Imrie, Willem P. van Hoorn, Aleksandra 
Kalisz, Anthony R. Bradley, Charlotte M. Deane, bioRxiv 2022.07.15.500218; doi: https://doi.org/10.1101/2022.07.15.500218 

● RL is popular to integrate (multi-)objective optimization with generative models
○ Can be used with all model architectures -> policy gradient

● BUT, it is highly stochastic (can lead to unstable training) + unclear parameter optimization strategy

policy gradient

log likelihood reward term



Putting Molecular Generation to Practice
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● DrugEx (Molecular Generation)1

○ https://github.com/CDDLeiden/DrugEx 
● LED3Score (SA Scoring)2

○ https://github.com/AlanHassen/led3_score 
● QSPRPred (QSPR Modelling)3

○ https://github.com/CDDLeiden/QSPRPred 
● Spock (Molecular Docking/SBDD)

○ https://github.com/CDDLeiden/spock 
○ (available soon)

● GenUI (GUI)
○ https://github.com/martin-sicho/genui

1. Martin Šícho, Sohvi Luukkonen, Helle W. van den Maagdenberg, Linde Schoenmaker, Olivier J. M. Béquignon, and Gerard J. P. van Westen
Journal of Chemical Information and Modeling 2023 63 (12), 3629-3636
DOI: 10.1021/acs.jcim.3c00434
2. Hassen AK, Sicho M, van Aalst YJ, Huizenga MCW, Reynolds DNR, Luukkonen S, et al. Generate What You Can Make: Achieving in-house synthesizability with readily available 
resources in de novo drug design. ChemRxiv. 2024; doi:10.26434/chemrxiv-2024-wtjt6 This content is a preprint and has not been peer-reviewed.
3. van den Maagdenberg HW, Šícho M, Alencar Araripe D, Luukkonen S, Schoenmaker L, Jespers M, et al. QSPRpred: a Flexible Open-Source Quantitative Structure-Property Relationship 
Modelling Tool. ChemRxiv. 2024; doi:10.26434/chemrxiv-2024-m9989 This content is a preprint and has not been peer-reviewed.

https://github.com/CDDLeiden/DrugEx
https://github.com/AlanHassen/led3_score
https://github.com/CDDLeiden/QSPRPred
https://github.com/CDDLeiden/spock
https://github.com/martin-sicho/genui


ε
pretrained

(agent)
finetuned

(prior)

De Novo Drug Design Case Study (Monoglyceride Lipase, MGLL)
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DrugEx

CompoundsScoring 
environment

Reinforcement Learning Loop

QSAR Model
Is the generated compound likely 

to bind?

LED3Score 
Given a set of building blocks, can we find a 

synthetic route to the given compound?

DrugEx: J. Chem. Inf. Model. 2023, 63, 12, 3629–3636
LED3Score: ChemRxiv. 2024; doi:10.26434/chemrxiv-2024-wtjt6 This 
content is a preprint and has not been peer-reviewed.

3



De Novo Drug Design Case Study (Monoglyceride Lipase, MGLL)
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● Workflow1: 
a. Train DrugEx with six different SA scores as an objective:

■ 1. None (baseline), only the QSAR model
■ 2. SAScore by Ertl et al.2

■ ML-based:
● 3. LED3_casp10k
● 4. LED3_chembl200k
● 5. ZINC_casp10k
● 6. ZINC_chembl200k (RAScore reproduction)

b. Generate 100,000 structures for each of the 6 cases.
c. Solve routes for all 6 cases with AiZynthFinder.
d. Determine desirability of the generated structures.
e. Answer questions:

■ Q1: How many desired compounds with solved routes can we obtain?
■ Q2: What is the prediction error of the ML-based scores on the generated molecules?
■ Q3: Can we pick and synthesize new active molecules?

1. Hassen AK, Sicho M, van Aalst YJ, Huizenga MCW, Reynolds DNR, Luukkonen S, et al. Generate What You Can Make: Achieving in-house synthesizability with readily available resources in de novo drug design. ChemRxiv. 
2024; doi:10.26434/chemrxiv-2024-wtjt6 This content is a preprint and has not been peer-reviewed. https://doi.org/10.26434/chemrxiv-2024-wtjt6 

2. Ertl, P., Schuffenhauer, A. Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. J Cheminform 1, 8 (2009). https://doi.org/10.1186/1758-2946-1-8 

https://doi.org/10.26434/chemrxiv-2024-wtjt6
https://doi.org/10.1186/1758-2946-1-8


Q1: Predicted Desirability (Synthesizable & Active)
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● Synthetic accessibility is important to 
account for
○ QSAR baseline without SA 

nearly zero solved routes
● SAScore resulted in poor 

optimization of the QSAR objective
● Building block set size does not matter 

much 
○ ZINC and LED3 showed 

comparable results for all ML-based 
scores



Q2: Predictive Performance on Generated Compounds
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Q3: Experimental Validation
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Chemokine Receptors (CCRs) in Cancer
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Chemokine receptor inhibitors in cancer. Inhibitors in preclinical models and 
clinical trials. 
From: Mollica Poeta V. et al., Front. Immunol. 10:379. doi: 10.3389/fimmu.2019.00379

CCR7 directs cells to organs that express their ligands (CCL21 and CCL19)
From: Jaeger K. et al., Cell, 5:178, doi: 10.1016/j.cell.2019.07.028



Activation and Deactivation of CCRs
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Activation

Endogenous activation via chemokine. 
From: Liu, K. et al., Nature 585:126-135, 
doi: 10.1038/s41586-020-2492-5

Deactivation - Orthosteric/Extracelular Allosteric

Maraviroc, extracellular allosteric antagonist of CCR5. 
From: Calmet, P. et al., FEBS J, 287:2367-2385. 
doi: 10.1111/febs.15145

Deactivation - Intracellular Allosteric

Cmp2105, intracellular allosteric antagonist of CCR7. 
From: Jaeger K. et al., Cell, 5:178, doi: 10.1016/j.cell.2019.07.028



Molecular Docking in De Novo Drug Design Towards Intracellular Allosteric Ligands of CCR2
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DrugEx
(generative NN)

CompoundsScoring 
environment

Reinforcement Learning Loop

ZINCScore 
Given a set of building blocks, can we find a 

synthetic route to the given compound? 3

Molecular Docking
Score on interactions the ligand 

can make

ε
finetuned

(agent)
pretrained
(mutate)

Sicho et al. Optimizing Molecular Interactions in De Novo Drug Design: 
Structure-Based Generation of Intracellular Allosteric Ligands for CCR2 
with Transformers, Reinforcement Learning and Docking, 2025, 
Unpublished.



MAGL: SA Prediction in DrugEx
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The Binding Pocket

● One crystal structure with an intracellular allosteric 
ligand (CCR2-RA-[R]):
○ https://www.rcsb.org/structure/5T1A 
○ downsides:

■ slightly lower resolution (2.81 Å)
■ some residues incomplete 
■ mutations of some residues

○ upsides
■ important residues in the binding site are complete 

and have a meaningful orientation towards the 
ligand 

■ most of the questionable residues are not directly 
in the binding site

● Usable for docking after cleanup and some repairs 
○ add incomplete residues
○ reverse mutations close enough to the binding site with a 

plausible rotamer of the wild type amino acid

lipophilic 
subpocket

pi-stacking

2 hydrogen bond acceptors

halogen bond

CCR2-RA-[R] 
IC50 = 170 nM

https://www.rcsb.org/structure/5T1A


Known Allosteric CCR2 Ligands
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SD-24
Ki = 3.2 nM  

CCR2-RA-[R] 
IC50 = 12 nM

Compound 39
Ki =  1.6 nM

JNJ-27141491 
IC50 = 13 nM

CCX140
IC50 = ???

* data from ChEMBL



Docking of Known Ligands (AutoDock Vina)
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Interactions: https://github.com/pharmai/plip 

CCR2-RA-[R]

JNJ-27141491 Compound 39

https://github.com/pharmai/plip


Docking of Known Ligands (AutoDock Vina)
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Interactions: https://github.com/pharmai/plip 

SD-24 

CCX140

https://github.com/pharmai/plip


MAGL: SA Prediction in DrugEx

26

Scoring the Interactions

● Determined by 5 most active compounds from each scaffold group
● Interactions manually divided into groups:

○ Required
■ Occur in all scaffold groups

○ Essential
■ Believed to be important for increased activity
■ pi-stacking interactions with key residues

○ Important
■ Known parts of the binding site that many of the high 

affinity/potency ligands exploit, but each different way
■ especially lipohilic interactions

○ Interesting/New
■ interactions that the top ligands have, but not all of them + 

potentially interesting residues to hit
SCORE = Xi… % of contacts made in group i

all active ligands (pchembl >= 6.5)



MAGL: SA Prediction in DrugEx
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Reinforcement Learning

Generative Workflow
● generate 10,000 molecules and score them
● keep ligands with:

○ ZINCScorer > 0.75
○ Required and Essential IFPScore 

component = 1 (hydrogen bonds with 
conserved residues + pi-stacking)

○ => 96 structures

=> after manual prioritization: 
synthesis of 4 distinct scaffolds 
(2 easy, 2 hard)



Molecular Dynamics with CCR2-RA-[R]
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CCR2-RA-[R]
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Candidate v4_007_a

CCR2-RA-[R]
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Candidate v4_100_d5_i

CCR2-RA-[R]



CCR2-RA-[R] Displacement Assay
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Figure : Data represent mean ± SEM of three independent experiments performed in duplicate. Total binding (TB) is set 
to 100% and nonspecific binding (NSB) to 0%. pKi ± SEM was determined from three independent experiments 
performed in duplicate or % displacement at 10 µM ± SD of two independent experiments performed in duplicate. The 
compounds were tested at 10 µM on 20 µg U2OS-CCR2 membranes and [3H]CCR2-RA-[R] with a concentration of ~6.5 
nM. If [3H]CCR2-RA-[R] displacement is ≥50%, the compounds were tested with ranging concentrations. For pKi 
calculations a kD value of 6.3 nM was used.

v4_100_d5_u  (Ki ~ 100 nM)
v4_100_d5_i  (Ki ~ 1 µM) 



32

Software Development Perspective

● ChemStore
○ efficient processing

■ multi-CPU
■ Dask
■ …

○ molecule representation hierarchy
■ standardization
■ unique identification
■ conformers
■ tautomers
■ …

○ multiple implementations
■ Pandas
■ SQL Databases
■ ….

https://github.com/CDDLeiden/QSPRpred/tree/dev 

https://github.com/CDDLeiden/QSPRpred/tree/dev


33

Conclusions
● DNDD is a large and historically rich field 

○ It has seen a significant boost in the last years 
from generative DL models

● Challenges:
○ Synthetic accessibility and overall stability of 

generated structures
■ Plausible pose generation for in pocket 

generators
○ Validation and benchmarking

■ Prospective validation with follow up wet 
lab experiments paramount

○ Multi-modal models for zero-shot predictions
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