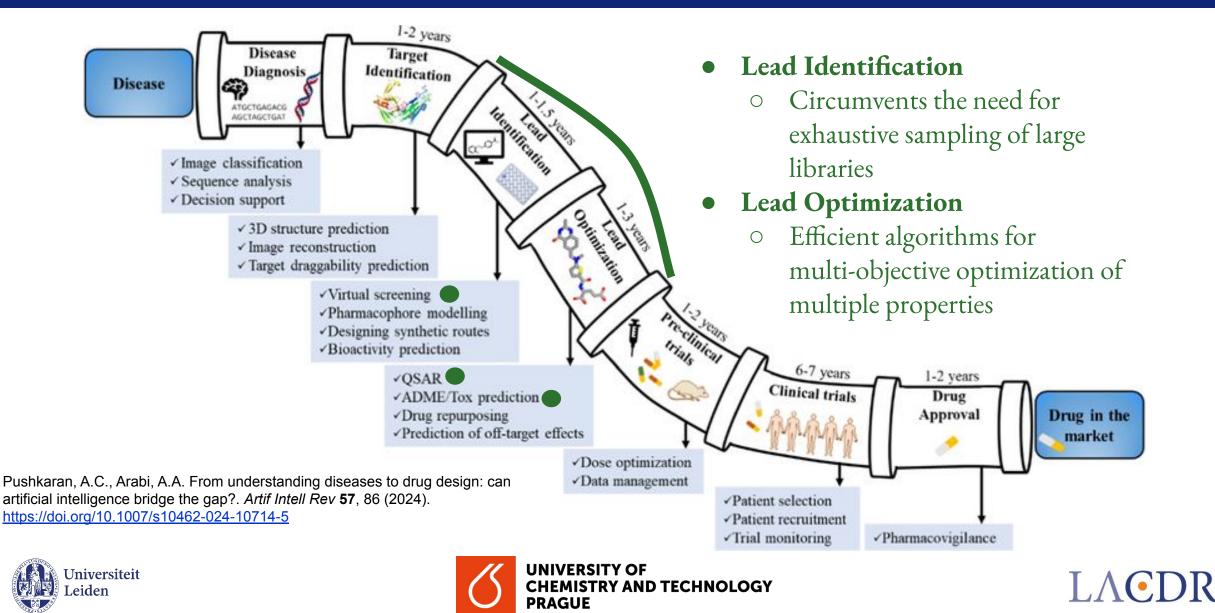
De Novo Drug Design

Martin Šícho (Martin.Sicho@vscht.cz) – 8ADD Olomouc – 2025-01-30

UNIVERSITY OF CHEMISTRY AND TECHNOLOGY PRAGUE

De Novo Drug Design (DNDD) in the Pipeline



The Case for De Novo Drug Design

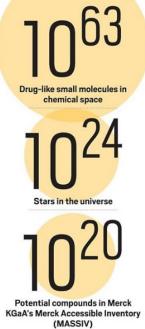
universität wien

Dimensions of the chemical space

Туре	# molecules
Particles in the (observable) universe	1082
Molecules < 1000 Da consisting of C, N, O, P, S, Hal, H	Up to 10 ¹⁸⁰
Drug-like molecules based on extrapolation on GDB-17 ² based on stitching together up to 30 carbon, nitrogen, oxygen, and sulfur atoms in different arrangements	10 ³³ 10 ⁶³
Merck Accessible Inventory (MASSIV)	10 ²⁰
Chemical universe database GDB-17: Listing all molecules up to 17 atoms ¹	166,400,000,000
Make-on-demand compounds in the public domain	> 5,000,000,000
On-stock compounds	230,000,000
Known natural products	700,000
Purchasable natural products	25,000 ³

¹ Ruddigkeit L et al. J Chem Inf Model 2012, 52, 2864–2875. doi: 10.1021/ci300415d
 ² Polishchuk PG, Madzhidov TI, Varnek A. J Comput-Aided Mol Des 2013, 27, 675–679.
 ³ Chen Y. et al., J Chem Inf Model 2017, 57, 2099–2111.

27.01.2025 Figure: https://cen.acs.org/pharmaceuticals/drug-discovery/Hunting-drugs-chemical-space/100/i23



(MASSIV) 1004 Small-molecule drugs Page 14 Kirchmair et al., 8ADD Olomouc, 2025,

https://www.kfc.upol.cz/wp-content/ uploads/2025/01/FOR-PUBLICATI ON_kirchmair_introduction-to-chem informatics.pdf

De Novo Drug Design: Yesterday and Today

1700

J. Med. Chem. 1993, 36, 1700-1710

Pharmaceuticals 2024, 17(2), 161; https://doi.org/10.3390/ph17020161

GroupBuild: A Fragment-Based Method for De Novo Drug Design

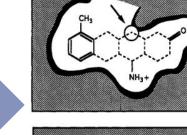
Sergio H. Rotstein and Mark A. Murcko*

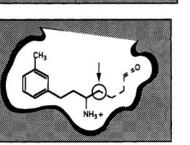
Vertex Pharmaceuticals Incorporated, 40 Allston Street, Cambridge, Massachusetts 02139-4211

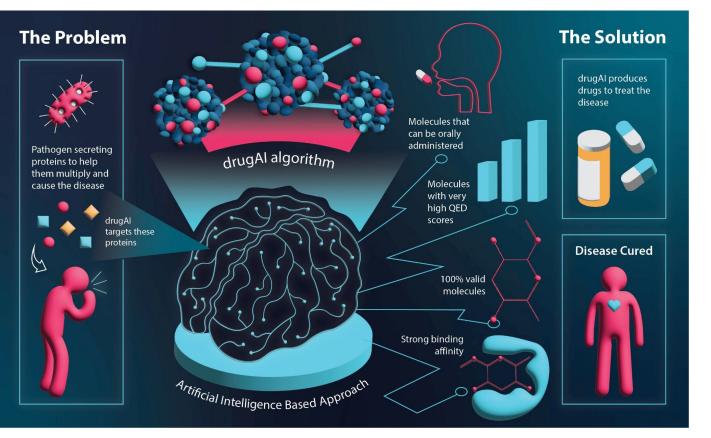
Received February 9, 1993

A novel method for *de novo* drug design, GroupBuild, has been developed to suggest chemically reasonable structures which fill the active sites of enzymes. The proposed molecules provide good steric and electrostatic contact with the enzyme and exist in low-energy conformations. These structures are composed entirely of individual functional groups (also known as "building blocks" or "fragments") which the program chooses from a predefined library. User-selected enzyme seed atom(s) may be used to determine the area(s) in which structure generation begins. Alternatively, GroupBuild may begin with a predocked "inhibitor core" from which fragments are grown. For each new fragment generated by the program, several thousand candidates in a variety of locations and orientations are considered. Each of these candidates is scored based on a standard molecular mechanics potential function. The selected fragment and orientation are chosen from among the highest scoring cases. Tests of the method using HIV protease, FK506 binding protein, and human carbonic anhydrase demonstrate that structures similar to known potent inhibitors may be generated with GroupBuild.

1000		H N	
Acid	Aldehyde	Ĥ Amide	
H H		H(ec)	
Amine	Benzene	Cyclohexane	combi
H(eq)	н—сн _е —сн _е —н	*>~*	comon
Cyclopentane	Ethane	H H Ethylene	
Hydroxy	H CH2 H Methoxy	н—СН _а —н Methane	
°	S H		

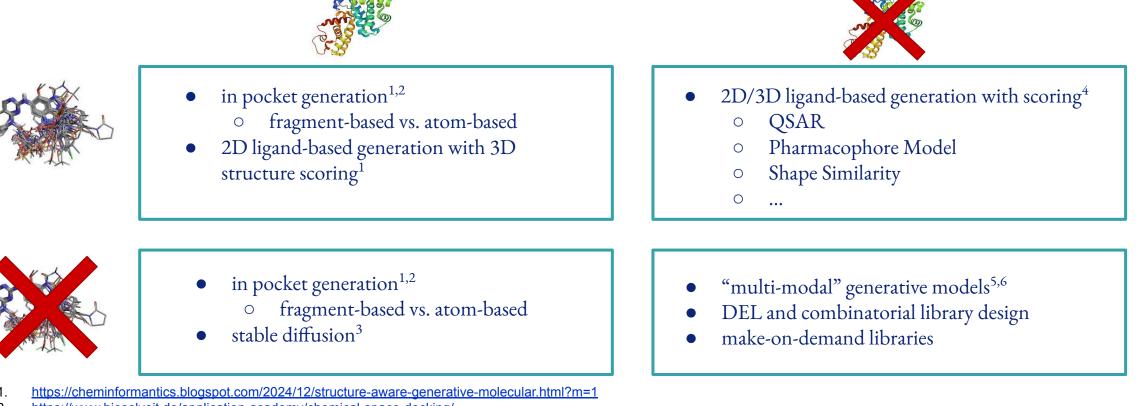






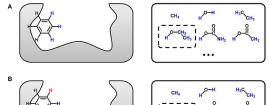
UNIVERSITY OF CHEMISTRY AND TECHNOLOGY PRAGUE

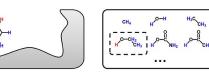
When and How?

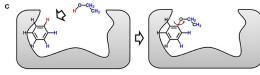


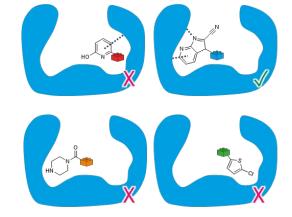
- 2. https://www.biosolveit.de/application-academy/chemical-space-docking/
- 3. <u>https://github.com/arneschneuing/DiffSBDD</u>
- 4. Liu X, IJzerman AP, van Westen GJP. Computational Approaches for De Novo Drug Design: Past, Present, and Future. Methods Mol Biol. 2021;2190:139-165. doi:10.1007/978-1-0716-0826-5_6
- 5. Bernatavicius A, Šícho M, Janssen APA, Hassen AK, Preuss M, van Westen GJP. AlphaFold Meets De Novo Drug Design: Leveraging Structural Protein Information in Multitarget Molecular Generative Models. J Chem Inf Model. 2024;64(21):8113-8122. doi:10.1021/acs.jcim.4c00309
- 6. Bernatavicius A, Šícho M, Janssen APA, Hassen AK, Preuss M, van Westen GJP. AlphaFold Meets De Novo Drug Design: Leveraging Structural Protein Information in Multitarget Molecular Generative Models. J Chem Inf Model. 2024;64(21):8113-8122. doi:10.1021/acs.jcim.4c00309

In Pocket 3D Generation









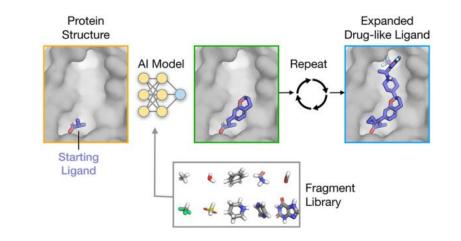


Fig 1: LigBuilder²

Fig 2: Chemical Space Docking³

Fig 3: FRAME⁵

- Oldest methods with similar approaches appearing over the years¹
- Employ genetic algorithms and heuristics $^{2,3} \rightarrow$ obvious and transparent solution to the problem
- generative deep learning can be used as well^{4,5}
- Downsides:
 - Library of fragments/synthons is required -> limits search space, but often necessary due to complexity in 3D
 - DL models are black boxes + produced geometries and structures are often synthetically or physically impossible

J. Med. Chem. 1993, 36, 12, 1700–1710

Yuan Y, Pei J, Lai L. LigBuilder V3: A Multi-Target de novo Drug Design Approach. Front Chem. 2020;8:142. Published 2020 Feb 28. doi:10.3389/fchem.2020.00142
 https://www.bjosolveit.de/application_academy/chemical_space_docking/

<u>https://www.biosolveit.de/application-academy/ch</u>
 J. Med. Chem. 2022, 65, 13, 9478–9492

6. J. Chem. Inf. Model. 2024, 64, 6, 1794–1805

Powers AS, Yu HH, Suriana P, Koodi RV, Lu T, Paggi JM, Dror RO. Geometric Deep Learning for Structure-Based Ligand Design. ACS Cent Sci. 2023 Nov 17;9(12):2257-2267. doi: 10.1021/acscentsci.3c00572. PMID: 38161364; PMCID: PMC10755842.

2D Graph Generation

- By far the most explored and abundant set of methods
- Fragment growing or joining applicable to 2D graphs as well
 - GraphGA²
 - $CReM^3$
- Deep learning models most popular recently
 - Recurrent Neural Networks (RNNs)^{1,4}
 - Variational Autoencoders (VAEs)^{1,4}
 - Generative Adversarial Networks (GANs)^{1,4}
 - Normalizing flow models⁴
 - Transformers⁵
 - .
- Reinforcement Learning (RL)¹

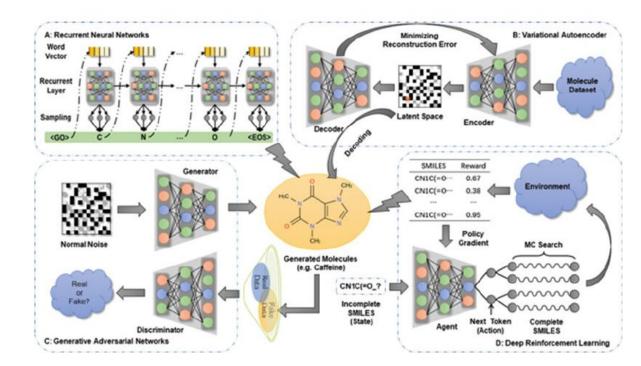
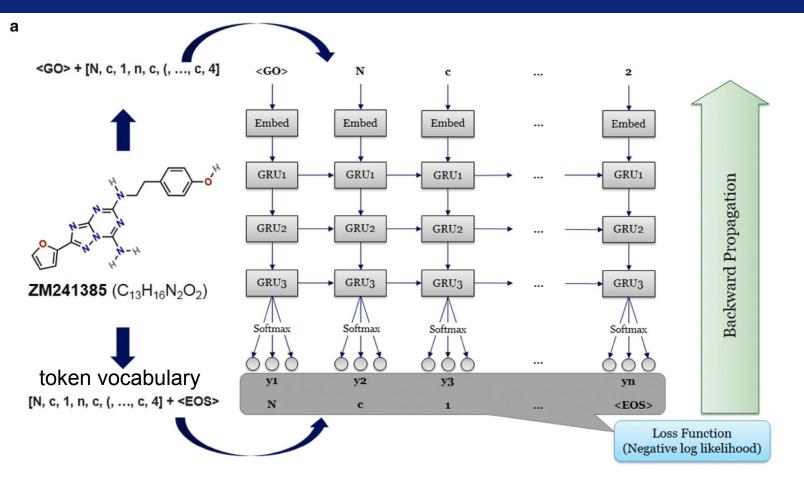


Fig 1: Overview of Common DL Architectures¹.

- 1. Liu X, IJzerman AP, van Westen GJP. Computational Approaches for De Novo Drug Design: Past, Present, and Future. Methods Mol Biol. 2021;2190:139-165. doi:10.1007/978-1-0716-0826-5_6
- 2. Jensen JH. A graph-based genetic algorithm and generative model/Monte Carlo tree search for the exploration of chemical space. Chem Sci. 2019 Feb 11;10(12):3567-3572. doi: 10.1039/c8sc05372c. PMID: 30996948; PMCID: PMC6438151
- 3. Polishchuk, P. CReM: chemically reasonable mutations framework for structure generation. J Cheminform 12, 28 (2020). https://doi.org/10.1186/s13321-020-00431-w
- 4. Bilodeau C, Jin W, Jaakkola T, Barzilay R, Jensen KF. Generative models for molecular discovery: Recent advances and challenges. WIREs Comput Mol Sci. 2022; 12:e1608. https://doi.org/10.1002/wcms.1608
- 5. Šícho M, Luukkonen S, van den Maagdenberg HW, Schoenmaker L, Béquignon OJM, van Westen GJP. DrugEx: Deep Learning Models and Tools for Exploration of Drug-Like Chemical Space. J Chem Inf Model. 2023;63(12):3629-3636. doi:10.1021/acs.jcim.3c00434

UNIVERSITY OF CHEMISTRY AND TECHNOLOGY PRAGUE

Recurrent Neural Networks (RNNs)



 RNNs have a notion of 'memory' using specialized neurons

• GRU or LSTM cells

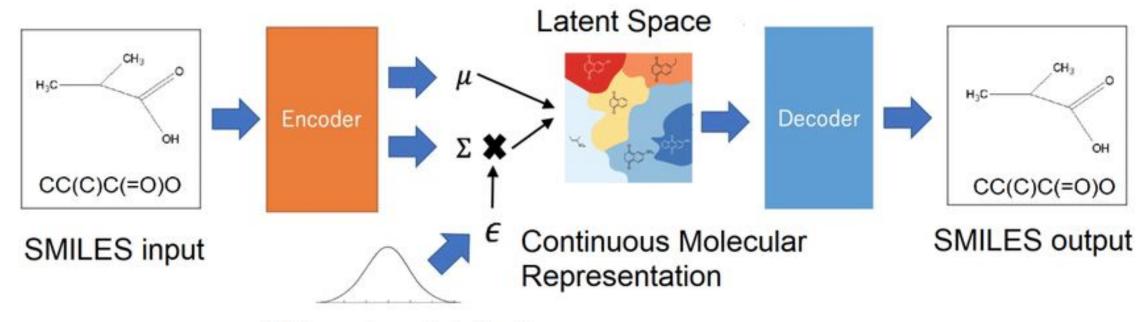
- for most tasks in NLP domain surpassed by transformers, but still prevalent in de novo drug design
 - RNNs generally fail on processing longer sequences (short memory)

1. Liu X, Ye K, van Vlijmen HWT, IJzerman AP, van Westen GJP. An exploration strategy improves the diversity of de novo ligands using deep reinforcement learning: a case for the adenosine A_{2A} receptor. J Cheminform. 2019 May 24;11(1):35. doi: 10.1186/s13321-019-0355-6. PMID: 31127405; PMCID: PMC6534880.

2. <u>https://www.geeksforgeeks.org/rnn-vs-lstm-vs-gru-vs-transformers/</u>

Variational Autoencoders (VAEs)

• Enable integration of (multi-)objective optimization into the generative process

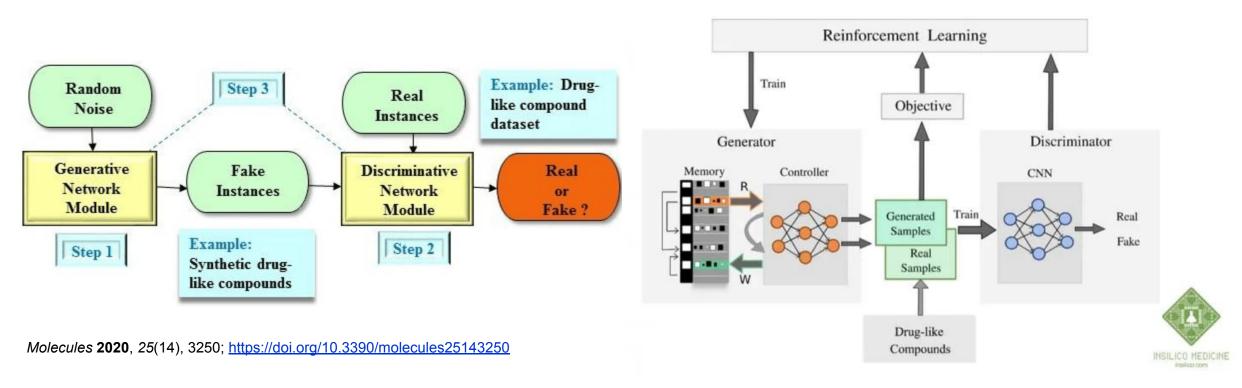


unit Gaussian distribution

R. Wei and A. Mahmood, "Recent Advances in Variational Autoencoders With Representation Learning for Biomedical Informatics: A Survey," in *IEEE Access*, vol. 9, pp. 4939-4956, 2021, doi: 10.1109/ACCESS.2020.3048309.

Generative Adversarial Networks (GANs)

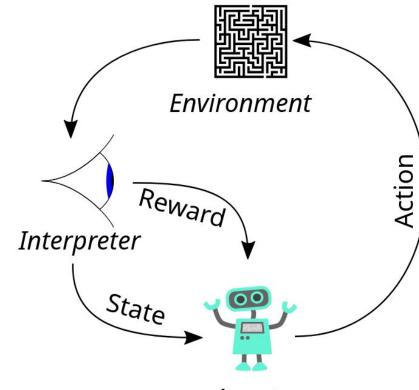
- Specialized training strategy that introduces a discriminator network to distinguish "real" and "fake" instances
- Can be combined with various optimization strategies for (multi-)objective optimization



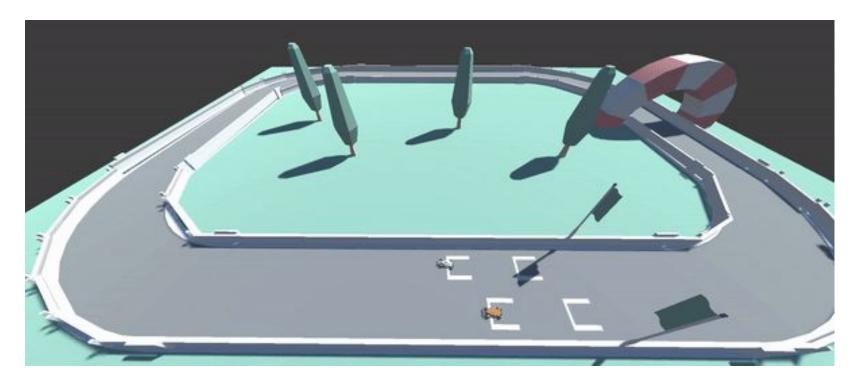
J. Chem. Inf. Model. 2018, 58, 6, 1194–1204

Reinforcement Learning (RL)

policy = sequence of **actions** the **agent** takes in the **environment** (goal = select best policy in terms of **reward**)



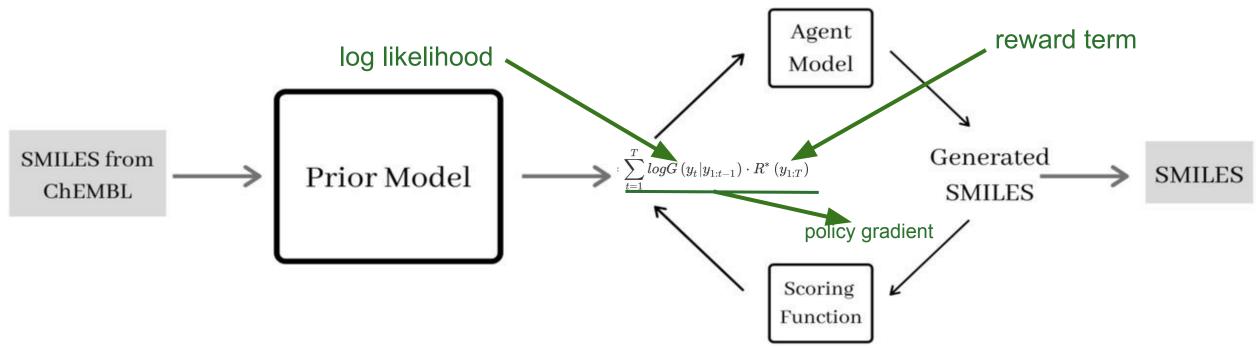
Agent



https://monidp.medium.com/self-driving-car-with-reinforcement-learning-in-unity-88458d13fcd1

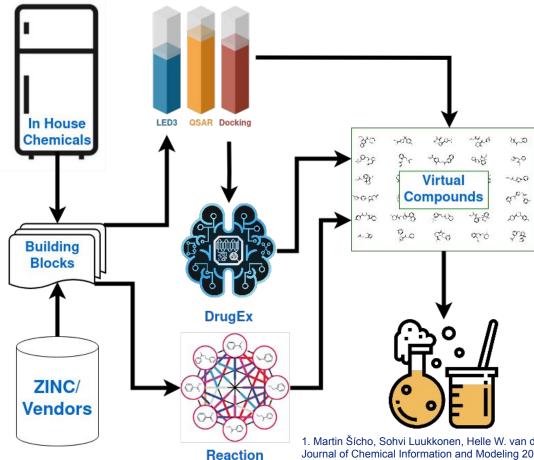
Reinforcement Learning in Molecular Generation

- RL is popular to integrate (multi-)objective optimization with generative models
 - Can be used with all model architectures -> **policy gradient**
- **BUT**, it is **highly stochastic** (can lead to unstable training) + unclear parameter optimization strategy



Testing the Limits of SMILES-based *De Novo* Molecular Generation with Curriculum and Deep Reinforcement Learning., Maranga Mokaya, Fergus Imrie, Willem P. van Hoorn, Aleksandra Kalisz, Anthony R. Bradley, Charlotte M. Deane, bioRxiv 2022.07.15.500218; doi: https://doi.org/10.1101/2022.07.15.500218

Putting Molecular Generation to Practice



Enumeration

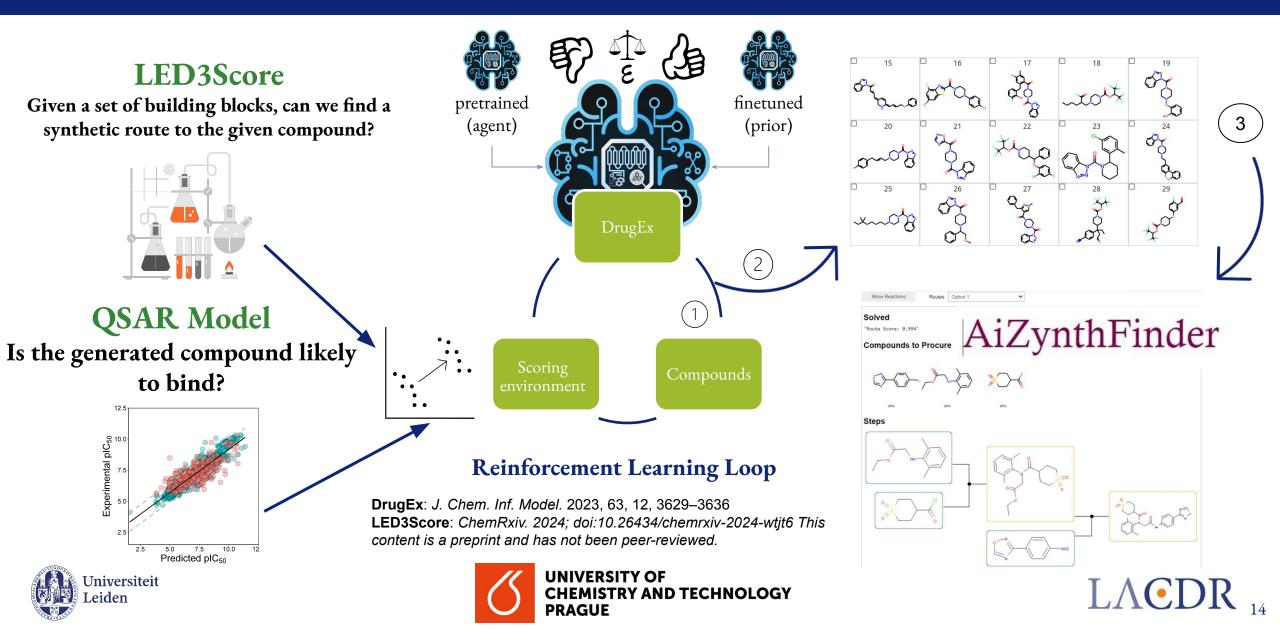
DrugEx (Molecular Generation)¹

- <u>https://github.com/CDDLeiden/DrugEx</u>
- LED3Score (SA Scoring)²
 - <u>https://github.com/AlanHassen/led3_score</u>
- QSPRPred (QSPR Modelling)³
 - <u>https://github.com/CDDLeiden/QSPRPred</u>
- Spock (Molecular Docking/SBDD)
 - <u>https://github.com/CDDLeiden/spock</u>
 - (available soon)
- GenUI (GUI)
 - <u>https://github.com/martin-sicho/genui</u>

1. Martin Šícho, Sohvi Luukkonen, Helle W. van den Maagdenberg, Linde Schoenmaker, Olivier J. M. Béquignon, and Gerard J. P. van Westen Journal of Chemical Information and Modeling 2023 63 (12), 3629-3636 DOI: 10.1021/acs.jcim.3c00434

 Hassen AK, Sicho M, van Aalst YJ, Huizenga MCW, Reynolds DNR, Luukkonen S, et al. Generate What You Can Make: Achieving in-house synthesizability with readily available resources in de novo drug design. ChemRxiv. 2024; doi:10.26434/chemrxiv-2024-wtjt6 This content is a preprint and has not been peer-reviewed.
 van den Maagdenberg HW, Šicho M, Alencar Araripe D, Luukkonen S, Schoenmaker L, Jespers M, et al. QSPRpred: a Flexible Open-Source Quantitative Structure-Property Relationship Modelling Tool. ChemRxiv. 2024; doi:10.26434/chemrxiv-2024-m9989 This content is a preprint and has not been peer-reviewed.

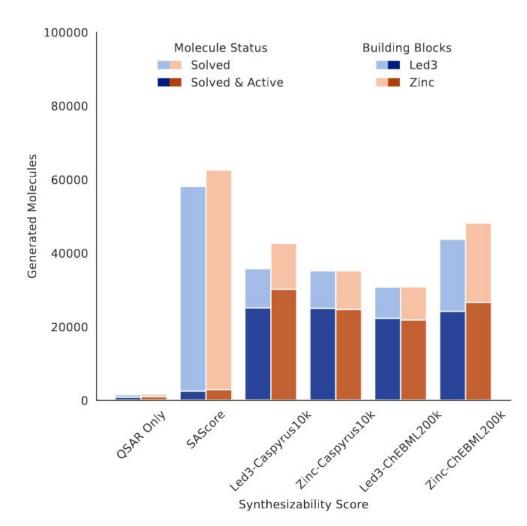
De Novo Drug Design Case Study (Monoglyceride Lipase, MGLL)



De Novo Drug Design Case Study (Monoglyceride Lipase, MGLL)

- Workflow¹:
 - . Train DrugEx with six different SA scores as an objective:
 - 1. None (baseline), only the QSAR model
 - 2. SAScore by Ertl et al.²
 - ML-based:
 - 3. LED3_casp10k
 - 4. LED3_chembl200k
 - 5. ZINC_casp10k
 - 6. ZINC_chembl200k (RAScore reproduction)
 - b. Generate **100,000** structures for each of the 6 cases.
 - c. Solve routes for all 6 cases with AiZynthFinder.
 - d. Determine desirability of the generated structures.
 - e. Answer questions:
 - Q1: How many desired compounds with solved routes can we obtain?
 - Q2: What is the prediction error of the ML-based scores on the generated molecules?
 - Q3: Can we pick and synthesize new active molecules?
- Hassen AK, Sicho M, van Aalst YJ, Huizenga MCW, Reynolds DNR, Luukkonen S, et al. Generate What You Can Make: Achieving in-house synthesizability with readily available resources in de novo drug design. ChemRxiv. 2024; doi:10.26434/chemrxiv-2024-wtjt6 This content is a preprint and has not been peer-reviewed. <u>https://doi.org/10.26434/chemrxiv-2024-wtjt6</u>
- 2. Ertl, P., Schuffenhauer, A. Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. J Cheminform 1, 8 (2009). https://doi.org/10.1186/1758-2946-1-8

Q1: Predicted Desirability (Synthesizable & Active)

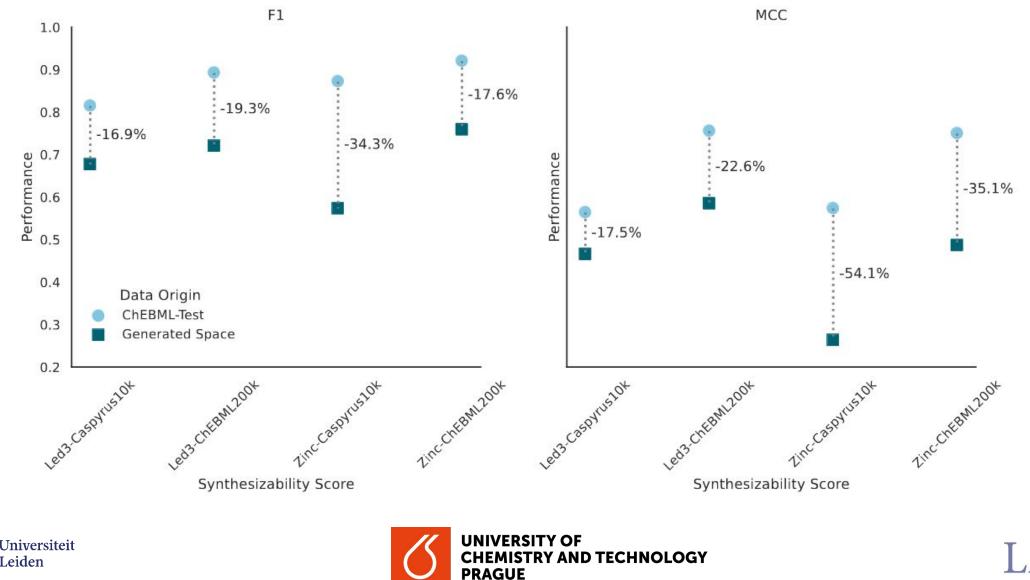


- QSAR baseline without SA nearly zero solved routes
- SAScore resulted in poor optimization of the QSAR objective
- Building block set size does not matter much
 - ZINC and LED3 showed comparable results for all ML-based scores

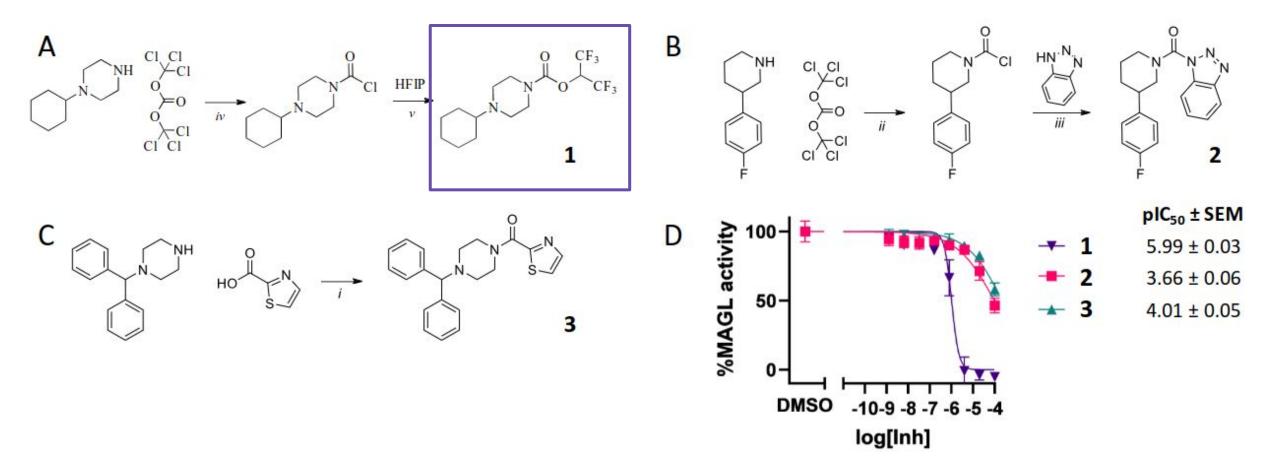
UNIVERSITY OF CHEMISTRY AND TECHNOLOGY PRAGUE

[•] Synthetic accessibility is important to account for

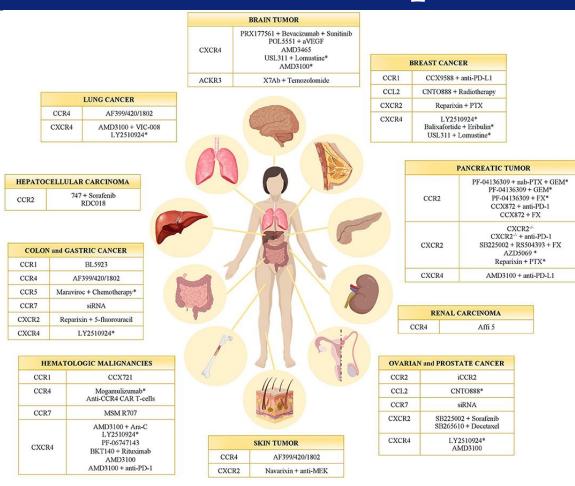
Q2: Predictive Performance on Generated Compounds

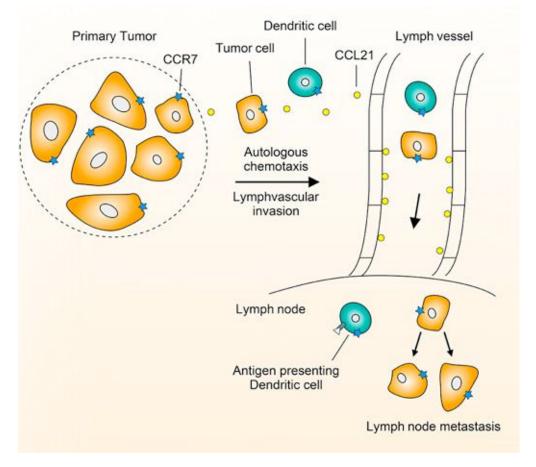


Q3: Experimental Validation



Chemokine Receptors (CCRs) in Cancer



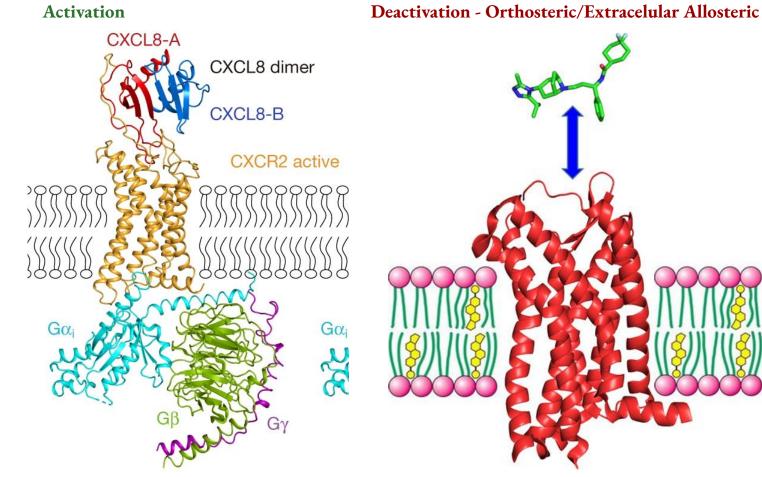


CCR7 directs cells to organs that express their ligands (CCL21 and CCL19) From: Jaeger K. et al., Cell, 5:178, doi: 10.1016/j.cell.2019.07.028

Chemokine receptor inhibitors in cancer. Inhibitors in preclinical models and clinical trials.

From: Mollica Poeta V. et al., Front. Immunol. 10:379. doi: 10.3389/fimmu.2019.00379

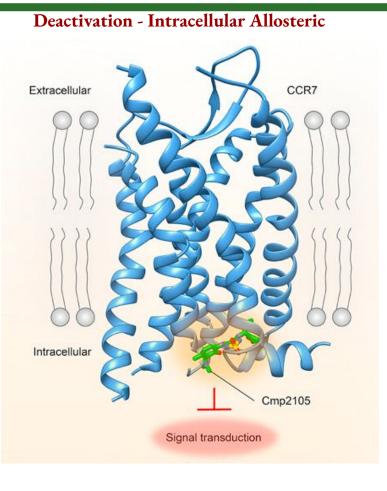
Activation and Deactivation of CCRs



Endogenous activation via chemokine. From: Liu, K. et al., Nature 585:126-135, doi: 10.1038/s41586-020-2492-5

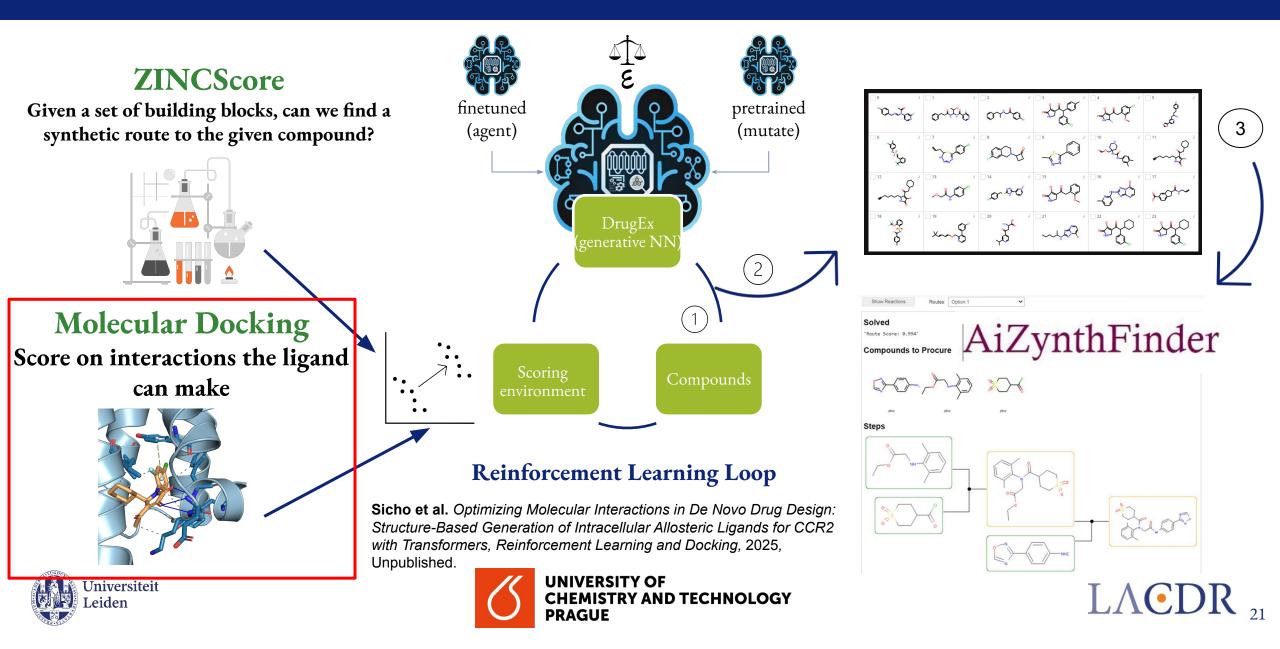
Maraviroc, extracellular allosteric antagonist of CCR5. From: Calmet, P. et al., FEBS J, 287:2367-2385. doi: 10.1111/febs.15145

UNIVERSITY OF CHEMISTRY AND TECHNOLOGY PRAGUE



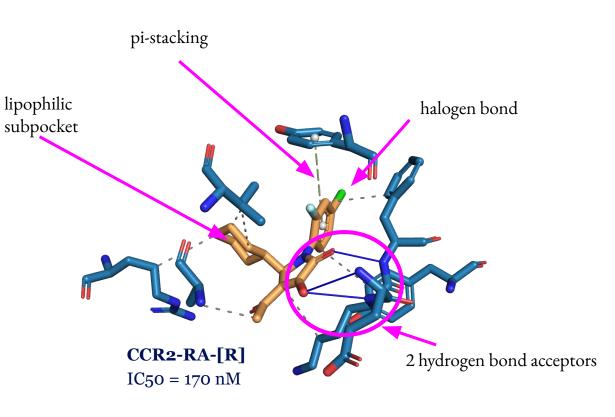
Cmp2105, intracellular allosteric antagonist of CCR7. From: Jaeger K. et al., Cell, 5:178, doi: 10.1016/j.cell.2019.07.028

Molecular Docking in De Novo Drug Design Towards Intracellular Allosteric Ligands of CCR2

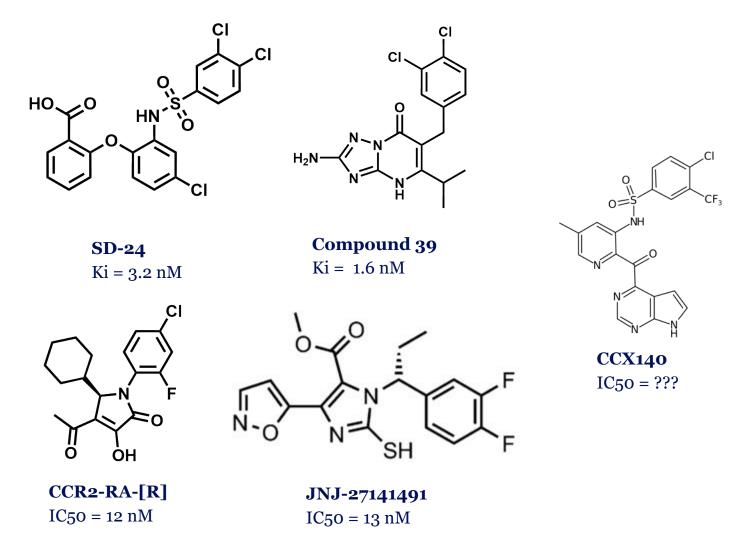


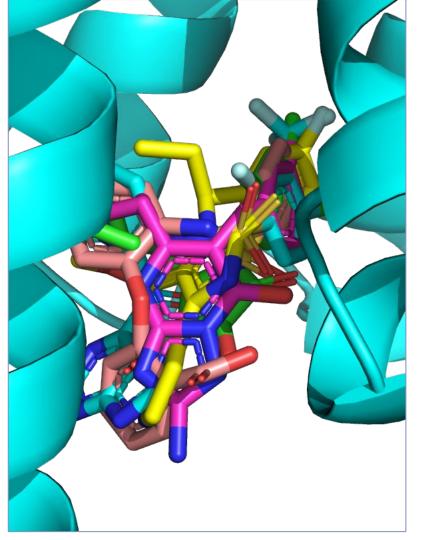
The Binding Pocket

- One crystal structure with an intracellular allosteric ligand (CCR2-RA-[R]):
 - <u>https://www.rcsb.org/structure/5T1A</u>
 - \circ downsides:
 - slightly lower resolution (2.81 Å)
 - some residues incomplete
 - mutations of some residues
 - upsides
 - important residues in the binding site are complete and have a meaningful orientation towards the ligand
 - most of the questionable residues are not directly in the binding site
- Usable for docking after cleanup and some repairs
 - add incomplete residues
 - reverse mutations close enough to the binding site with a plausible rotamer of the wild type amino acid



Known Allosteric CCR2 Ligands

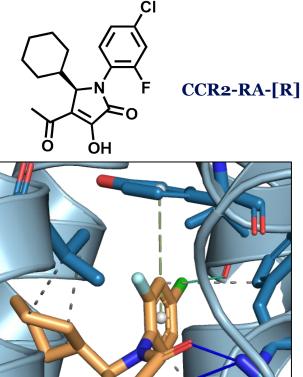


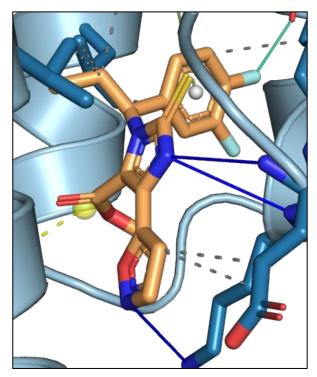


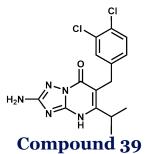
* data from ChEMBL

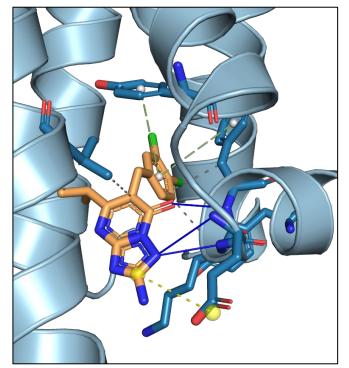
UNIVERSITY OF CHEMISTRY AND TECHNOLOGY PRAGUE

Docking of Known Ligands (AutoDock Vina)

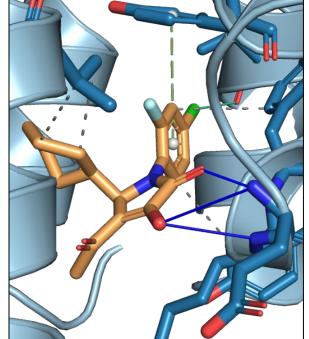






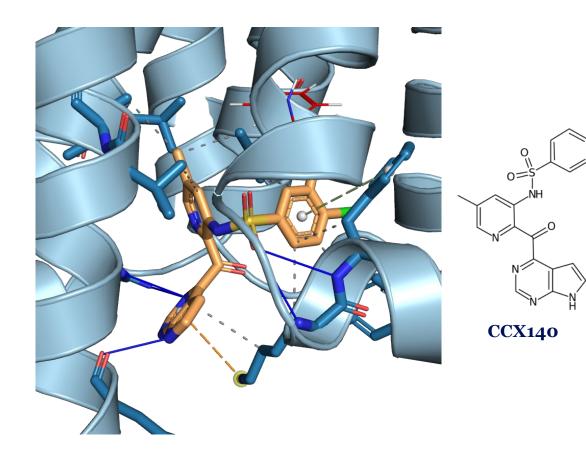


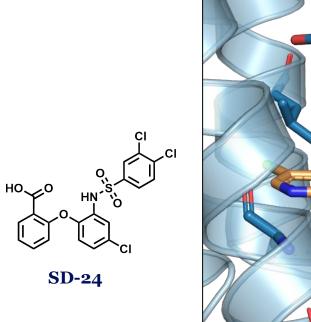
Interactions: https://github.com/pharmai/plip

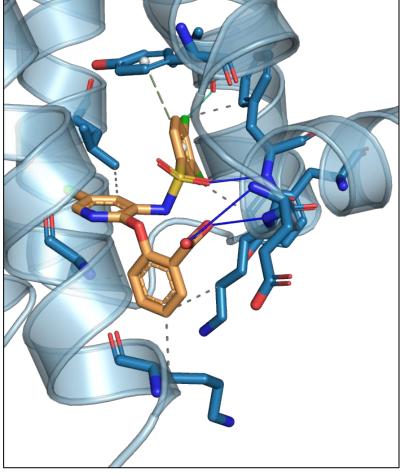


UNIVERSITY OF CHEMISTRY AND TECHNOLOGY

Docking of Known Ligands (AutoDock Vina)

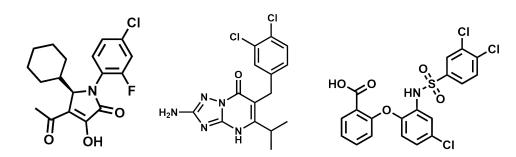






Interactions: <u>https://github.com/pharmai/plip</u>

Scoring the Interactions



- Determined by 5 most active compounds from each scaffold group
- Interactions manually divided into groups:
 - Required
 - Occur in all scaffold groups
 - Essential
 - Believed to be important for increased activity
 - pi-stacking interactions with key residues
 - Important
 - Known parts of the binding site that many of the high affinity/potency ligands exploit, but each different way
 - especially lipohilic interactions
 - Interesting/New
 - interactions that the top ligands have, but not all of them + potentially interesting residues to hit

_hbondd_LYS_311_A		15.0	
_hydroph_LEU_81_A	\bigcirc	13.0	
_hbondd_PHE_312_A		13.0	
_hbondd_GLU_310_A	\bigcirc	12.0	
_halogenbond_VAL_63_A	\bigcirc	12.0	
_hydroph_PHE_312_A	\bigcirc	12.0	
_hydroph_VAL_244_A	ŏ	11.0	
_hydroph_TYR_315_A	\bigcirc	11.0	
_pistack_TYR_305_A		11.0	
_hydroph_LYS_311_A		9.0	
_hydroph_ALA_241_A		7.0	
_hydroph_LYS_237_A		5.0	
_hydroph_TYR_305_A	$\overline{0}$	4.0	
_pistack_PHE_312_A		4.0	
_hbonda_LYS_237_A		4.0	
_hydroph_LEU_67_A		4.0	
_hydroph_ARG_138_A		3.0	
_hbondd_ARG_138_A		3.0	
_hydroph_VAL_63_A		2.0	
_saltbridge_GLU_310_A		2.0	

SCORE =
$$W = \frac{\sum_{i=1}^{n} w_i X_i}{\sum_{i=1}^{n} w_i}$$

all active ligands (pchen	, hl s	- (5)
hbondd_LYS_311_A		179.0
		2072-2020 HD
hydroph_PHE_312_A	\bigcirc	156.0
hydroph_LEU_81_A		145.0
hbondd_PHE_312_A		142.0
pistack_TYR_305_A	\bigcirc	142.0
hydroph_TYR_315_A	\bigcirc	136.0
hydroph_VAL_244_A	\bigcirc	125.0
hydroph_LYS_311_A	\bigcirc	123.0
hydroph_ALA_241_A		94.0
hbondd_GLU_310_A	\bigcirc	93.0
hbondd_ARG_138_A		83.0
hydroph_LEU_67_A		75.0
pistack_PHE_312_A	\bigcirc	61.0
halogenbond_VAL_63_A	\bigcirc	59.0
hydroph_VAL_63_A		55.0
hydroph_LYS_237_A	\bigcirc	54.0
hydroph_THR_77_A		53.0
hydroph_TYR_305_A		48.0
hydroph_ARG_138_A		36.0
hydroph_LEU_134_A		27.0
hbonda_LYS_237_A		26.0
hbondd_ARG_238_A		26.0
pication_LYS_311_A		23.0
hydroph_ILE_245_A		22.0

pication_ARG_138_A

saltbridge_GLU_310_A

20.0

19.0

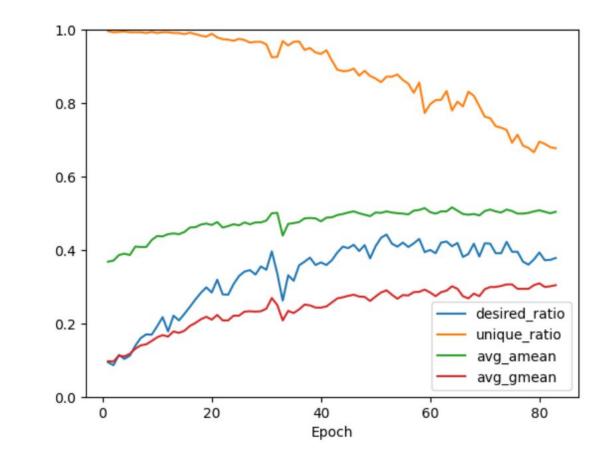
26

Reinforcement Learning

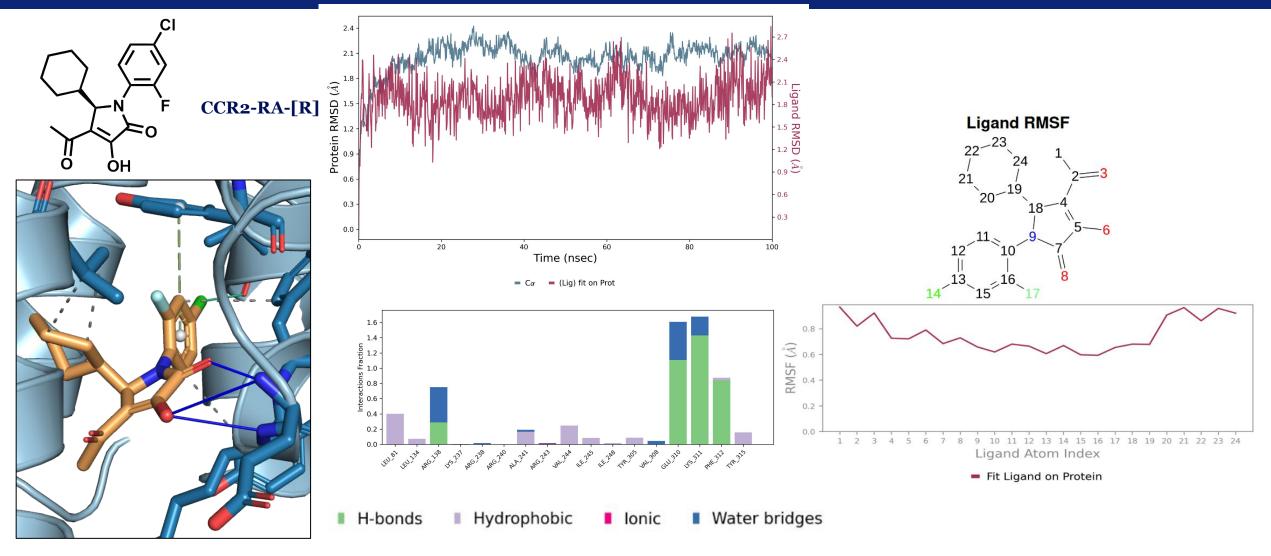
Generative Workflow

- generate 10,000 molecules and score them
- keep ligands with:
 - ZINCScorer > 0.75
 - Required and Essential IFPScore component = 1 (hydrogen bonds with conserved residues + pi-stacking)
 - => 96 structures

=> after manual prioritization: synthesis of 4 distinct scaffolds (2 easy, 2 hard)

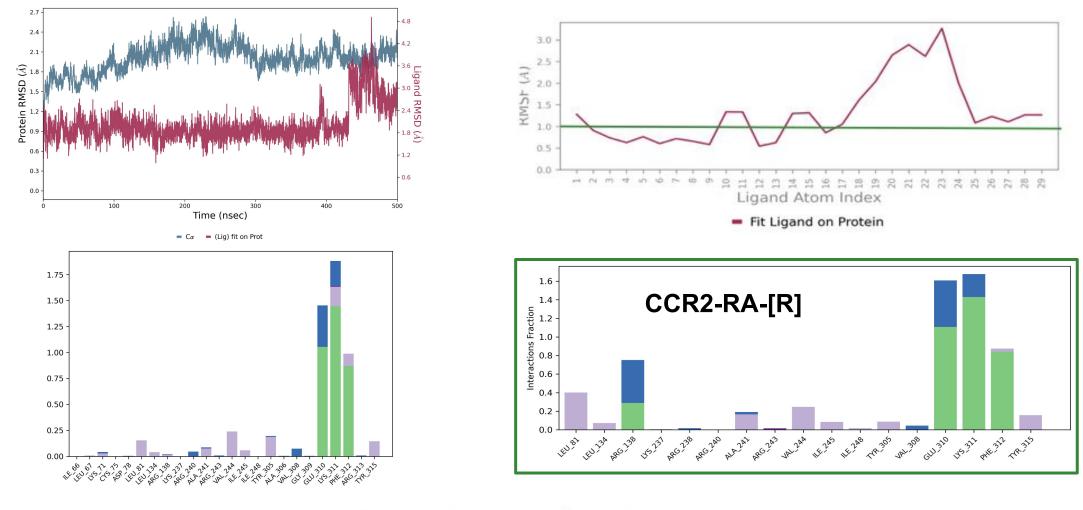


Molecular Dynamics with CCR2-RA-[R]



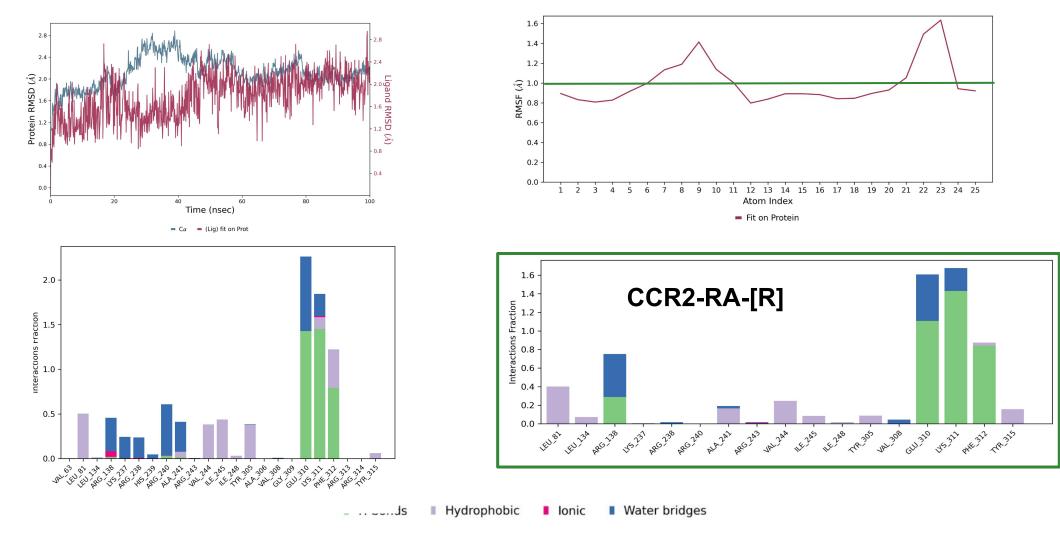
UNIVERSITY OF CHEMISTRY AND TECHNOLOGY PRAGUE

Candidate v4_007_a



H-bonds Hydrophobic Ionic Water bridges

Candidate v4_100_d5_i



CCR2-RA-[R] Displacement Assay

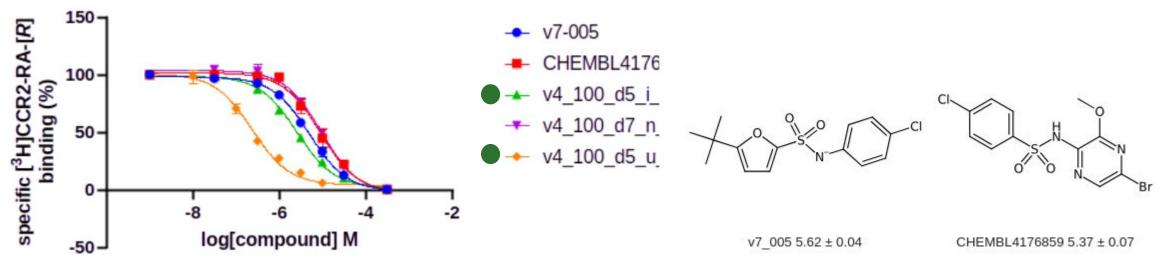
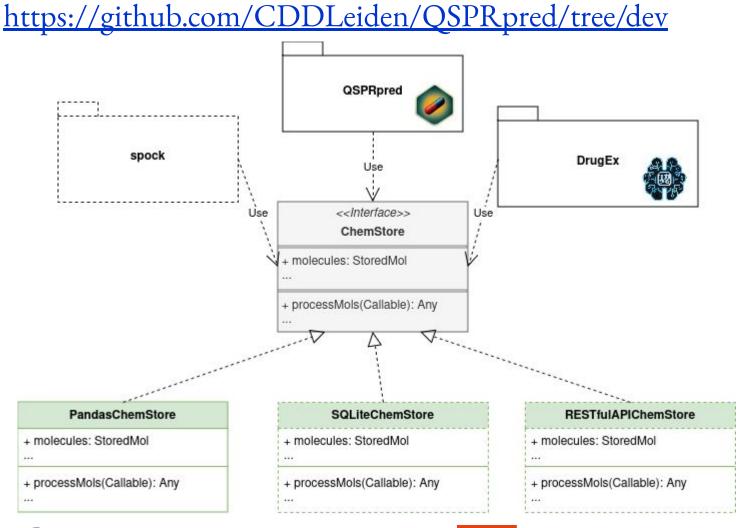


Figure : Data represent mean ± SEM of three independent experiments performed in duplicate. Total binding (TB) is set to 100% and nonspecific binding (NSB) to 0%. pKi ± SEM was determined from three independent experiments performed in duplicate or % displacement at 10 μ M ± SD of two independent experiments performed in duplicate. The compounds were tested at 10 μ M on 20 μ g U2OS-CCR2 membranes and [3H]CCR2-RA-[R] with a concentration of ~6.5 nM. If [3H]CCR2-RA-[R] displacement is ≥50%, the compounds were tested with ranging concentrations. For pKi calculations a kD value of 6.3 nM was used.

v4_100_d5_u (Ki ~ 100 nM) v4_100_d5_i (Ki ~ 1 μM)

Software Development Perspective



Universiteit Leiden

UNIVERSITY OF CHEMISTRY AND TECHNOLOGY PRAGUE

• ChemStore

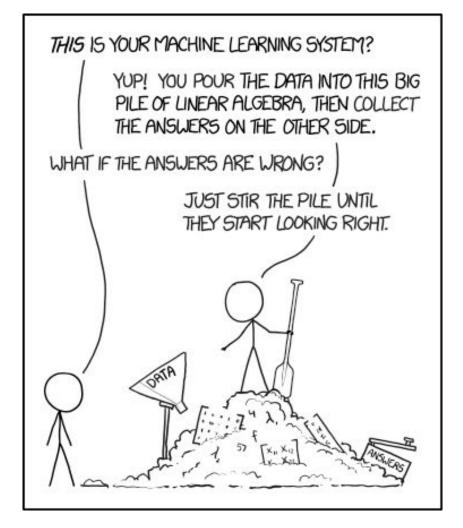
- efficient processing
 - multi-CPU
 - Dask
 - ••••
- molecule representation hierarchy
 - standardization
 - unique identification
 - conformers
 - tautomers

•••

- multiple implementations
 - Pandas
 - SQL Databases

Conclusions

- DNDD is a large and historically rich field
 It has seen a significant boost in the last years from generative DL models
- <u>Challenges:</u>
 - **Synthetic accessibility** and overall stability of generated structures
 - Plausible pose generation for in pocket generators
 - Validation and benchmarking
 - Prospective validation with follow up wet lab experiments paramount
 - Multi-modal models for zero-shot predictions



Acknowledgments

LACDR Colleagues

- Supervisors & Consultants:
 - Gerard van Westen
 - Willem Jespers
 - Anthe Janssen
 - Laura Heitman
- Postdocs
 - Sohvi Luukkonen

Jniversiteit

*l*eiden

- PhD Students
 - Helle van den Maagdenberg
 - Olivier Béquignon
 - Alan Kai Hassen
 - Andrius Bernatavicius
 - Yorick van Aalst
 - Remco van den Broek
- Master Students
 - Chara Spyropoulou
 - Sem Egbers

GitHub

VŠCHT DICH

- Daniel Svozil
- Wim Dehaen
- Valeria Fil
- Petr Palivec
- Jozef Fulop
- Asia Ceklarz

GRANTOVÁ AGENTURA ČESKÉ REPUBLIKY

UNIVERSITY OF CHEMISTRY AND TECHNOLOGY PRAGUE

