
8th Advanced in silico Drug Design workshop 2025

High-throughput Molecular Dynamics Workshop

Aleksandra Ivanova PhD student Palacký University Supervisor: **Dr. Pavel Polishchuk**

Find proteins for P24941 (Homo sapiens)

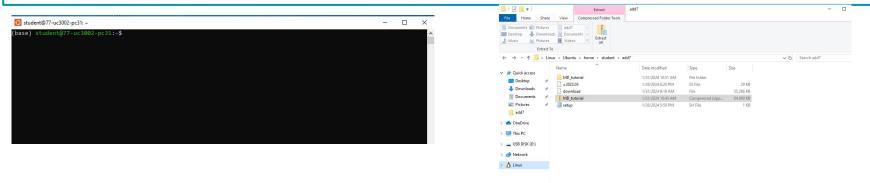
Go to UniProtKB: P2494

PDBBind: 1KE7

IC50: 8.9 (nM) from 1 assay(s)

Explore P24941

Run MD simulation (100 ps):


download data from https://www.kfc.upol.cz/8add

mkdir 8add

unzip manually under Ubuntu/home/student/8add directory

cd 8add/MD_tutorial/

conda activate md

Run MD simulation (100 ps):

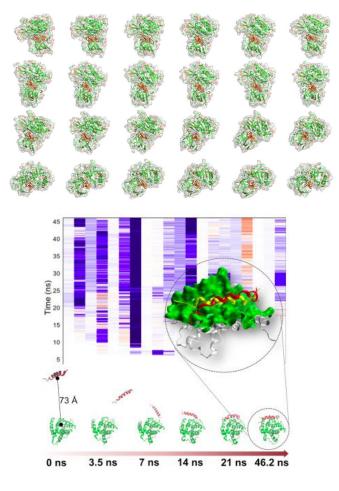
run_md -*p* protein_H_HIS.pdb -l ligand.mol --md_time 0.1 --nvt_time 10 --npt_time 10 --ncpu 8 -d mdrun --device gpu

student@77-uc3002-pc31: ~/add7/MD_tutorial/files

(base) student@77-uc3002-pc31:~\$ cd add7/MD_tutorial/files/

(base) student@77-uc3002-pc31:~/add7/MD_tutorial/files\$ conda activate md

WARNING: No ICDs were found. Either,


- Install a conda package providing a OpenCL implementation (pocl, oclgrind, intel-compute-runtime, beignet) or
- (md) student@77-uc3002-pc31:~/add7/MD_tutorial/files\$ run_md -p protein_HIS.pdb -l ligand.mol --md_time 0.1 --nvt_time 10 --npt_time 10 --ncpu 8 -d mdrun

2024-01-31 09:39:22,455 - distributed.comm.tcp - ERROR - Could not set timeout on TC Traceback (most recent call last):	CP_strea ux > Ubunt	m J > home > student > add7 >	MD_tutorial > files >	mdrun		Iog_protein_HIS_ligand_31-01-2024-09-23-54 - Notepad	_	
File "/home/student/miniconda3/envs/md/lib/python3.9/site-packages/distributed	Name	^	Date modified	Туре	Size	File Edit Format View Help		
<pre>sock.setsockopt(socket.SOL_TCP, TCP_USER_TIMEOUT, timeout * 1000)</pre>	rearite		pare mouthed	in the	of the local data	2024-01-31 09:23:54 - root - INFO: Namespace(protein='/home/student/add7/MD_1	tutor	ial/MD
OSError: [Errno 92] Protocol not available	md_fil	is in the second s	1/31/2024 10:54 AM	File folder		2024-01-31 09:23:54 - root - INFO: Start protein preparation		
2024-01-31 09:39:22,456 - distributed.comm.tcp - ERROR - Could not set timeout c 🎽	log pr	tein_HIS_ligand31-01-2024-09-2	1/31/2024 9:39 AM	Text Document	2 KB	2024-01-31 09:23:55 - root - INFO: Successfully finished protein preparation		
Traceback (most recent call last): 💉		otein_HIS_ligand31-01-2024-09-2		IDENTIFIER File	0 KB			
File "/home/student/miniconda3/envs/md/lib/python3.9/site-packages/distributed 🌧		d_bash_protein_HIS_ligand_31-01		Text Document	5 V P	2024-01-31 09:23:55 - root - INFO: Start ligand preparation		
<pre>sock.setsockopt(socket.SOL_TCP, TCP_USER_TIMEOUT, timeout * 1000)</pre>					JKD	2024-01-31 09:24:34 - root - INFO: Successfully finished 1 ligand preparation	n	
OSError: [Errno 92] Protocol not available 🧭	stream	d_bash_protein_HIS_ligand31-01	1/31/2024 10:51 AM	IDENTIFIER File	0 KB			
2024-01-31 09:39:22,480 - distributed.comm.tcp - ERROR - Could not set timeout c						2024-01-31 09:24:36 - root - INFO: Start complex preparation		
Traceback (most recent call last):						2024-01-31 09:24:38 - root - INFO: Successfully finished 1 complex preparation	on	
File "/home/student/miniconda3/envs/md/lib/python3.9/site-packages/distributed								
<pre>sock.setsockopt(socket.SOL_TCP, TCP_USER_TIMEOUT, timeout * 1000)</pre>						2024-01-31 09:24:40 - root - INFO: Start Equilibration steps		
OSError: [Errno 92] Protocol not available						2024-01-31 09:27:18 - root - INFO: Successfully finished 1 Equilibration step	p	
2024-01-31 09:39:22,480 - distributed.comm.tcp - ERROR - Could not set timeout c								
Traceback (most recent call last):						2024-01-31 09:27:18 - root - INFO: Start Simulation step		
File "/home/student/miniconda3/envs/md/lib/python3.9/site-packages/distributed						2024-01-31 09:39:12 - root - INFO: Simulation of 1 were successfully finished	d	
<pre>sock.setsockopt(socket.SOL_TCP, TCP_USER_TIMEOUT, timeout * 1000)</pre>						Finished: ['/home/student/add7/MD_tutorial/MD_tutorial/mdrun/md_files/md_run/	/prote	ein_HI
OSError: [Errno 92] Protocol not available								
2024-01-31 09:39:22,495 - distributed.core - INFO - Connection to tcp://127.0.0.						2024-01-31 09:39:14 - root - INFO: Start Analysis of the simulations		
2024-01-31 09:39:22 - root - INFO: Analysis of md simulation of 1 were successfu						2024-01-31 09:39:22 - root - INFO: Analysis of md simulation of 1 were succes	ssful	ly fin
Finished: ['/home/student/add7/MD_tutorial/MD_tutorial/mdrun/md_files/md_run/pro						Finished: ['/home/student/add7/MD tutorial/MD tutorial/mdrun/md files/md run/		
<pre>(md) student@77-uc3002-pc31:~/add7/MD_tutorial/MD_tutorial\$</pre>								1000
(md) student@77-uc3002-pc31:~/add7/MD_tutorial/MD_tutorial\$								

Molecular dynamics

- 1. MD simulations mimic the physical motions of atoms present in the actual environment;
- The atoms and molecules are allowed to interact for a fixed period of time, giving <u>a view of the</u> <u>dynamic "evolution" of the system.</u>
- to explore conformational space
- to explore biological process of molecular recognition
- to investigate ligand pose stability
- to explore protein flexibility
- to estimate binding affinity of protein-ligand (protein-protein) complexes

- To explore different conformations of protein
 - To investigate internal-flexibility of protein
 - For practical use we select conformations from the most populated clusters of all conformations

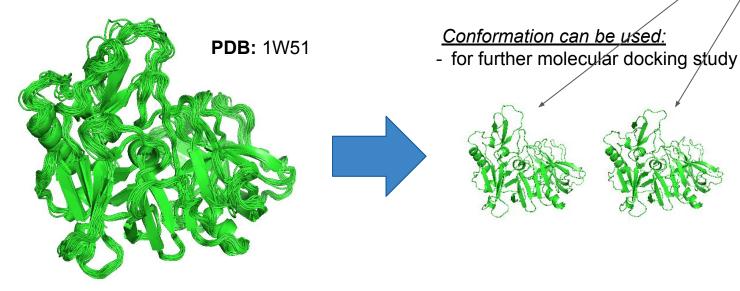
∢

, 1.0 BWSD

0.5

0.0

0.0


25

RMSD example 10ns 310K

1W51_protein

Time, ns

7.5

RMS fluctuation example 10ns 310K

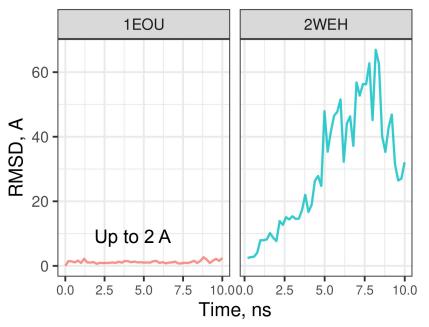
Residue number

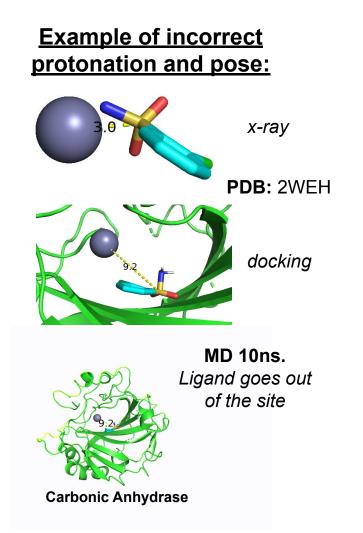
300

2.5

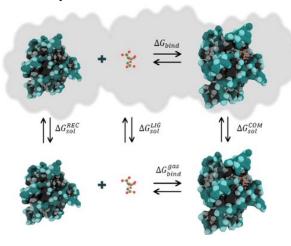
2.0

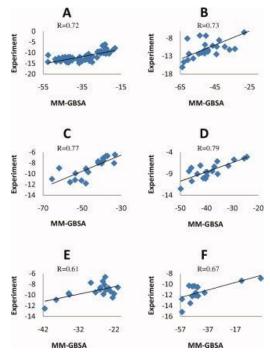
0.5


∢


RMSD,

• To explore stability of ligand pose


RMSD example 10ns 310K



• to estimate binding affinity of protein-ligand complexes

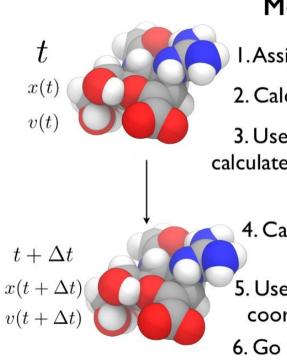
Correlation between **MM-GBSA** predicted and experimental binding free energy.

Yang T, Wu JC, Yan C, Wang Y, Luo R, Gonzales MB, Dalby KN, Ren P. Virtual screening using molecular simulations. Proteins. 2011 Jun;79(6):1940-51. doi: 10.1002/prot.23018. Epub 2011 Apr 12. PMID: 21491494; PMCID: PMC3092865.

Valdés-Tresanco, M.S., Valdés-Tresanco, M.E., Valiente, P.A. and Moreno E. *gmx_MMPBSA: A New Tool to Perform End-State Free Energy Calculations with GROMACS.* Journal of Chemical Theory and Computation, 2021 17 (10), 6281-6291. <u>https://pubs.acs.org/doi/10.1021/acs.jctc.1c00645</u>. *MMPBSA.py:* An Efficient Program for End-State Free Energy Calculations Bill R. Miller III, T. Dwight McGee Jr., Jason M. Swails, Nadine Homeyer, Holger Gohlke, and Adrian E. Roitberg Journal of Chemical Theory and Computation 2012 8 (9), 3314-3321 DOI: 10.1021/ct300418h

• to investigate protein-ligand interaction stability

[5]:	ligand protein interaction	LIG1.G TYR38.A Hydrophobic	VdWContact	TYR109.A Hydrophobic	VdWContact	THR110.A Hydrophobic	TRP125.A Hydrophobic	VdWContact
	Frame							
	0	False	False	True	False	False	True	False
	10	False	False	True	True	False	True	False
	20	False	False	True	True	False	True	True
	30	True	False	True	False	False	True	True
	40	False	False	True	False	True	True	True
	50	True	False	True	True	False	False	False
	60	False	False	True	False	False	False	False
	70	False	False	True	True	False	True	False
	80	False	False	True	False	False	True	False
	90	False	False	False	False	False	True	False

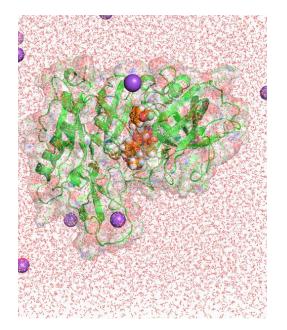

Bouysset, C., Fiorucci, S. ProLIF: a library to encode molecular interactions as fingerprints. J Cheminform 13, 72 (2021). https://doi.org/10.1186/s13321-021-00548-6

Molecular Dynamics Simulation Process

Simulation process is based on Newton's second law

Molecular Dynamics

I.Assign velocities to all atoms


2. Calculate forces on all atoms

3. Use Newton's second law to calculate acceleration on each atom F=ma

- 4. Calculate velocities for the next timestep
- 5. Use change of velocities to get coordinates for next timestep

Classical Molecular Dynamics

Structure Preparation

Force-field

 Definitions of inter-atomic bonded and non-bonded forces (ligand and protein)

Simulation box setup

box size/shape

Preprocessing

Pre-simulation

steps

Solvate system

add HOH molecules

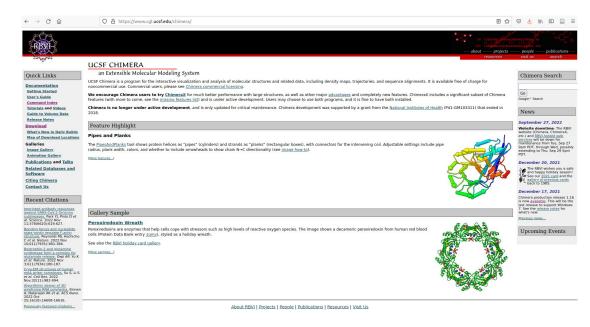
Neutralize system

add Na+/CI- ions

Energy minimization

- Stop minimization when the max force < 1000.0 kJ/mol/nm
- to ensure that the system has no steric clashes or inappropriate geometry

NVT and NPT equilibration


- 1000 ps
- equilibrate the solvent and ions around the protein

Product Simulation

Analysis

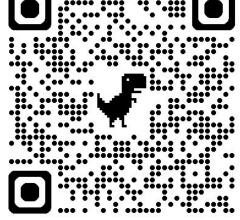
Structure preparation

Protein and ligand preparation. In-house scripts

https://github.com/ci-lab-cz/docking-files/tree/main

Docking preparation procedure

PDB download


By script: python scripts/get_pdb_fasta_mol_bypdbid.py -i 5tgz 5u09 -o P21554

it returns. P21554/ ligands_frompdb.smi (can use for pdb2mol script) P21554/5tgz/ 5tgz.pdb 5tgz.ligands_frompdb.sdf 5tgz_ligands_frompdb.smi ligands_list.log

or by PDB downloader

Target preparation

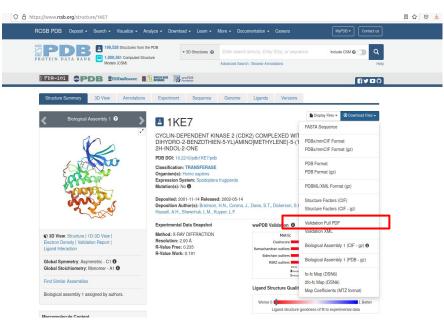
 Open Chimera
 Fetch PDBIDs (space as separator)
 File - Fetch by ID
 Select chosen chains (remove other chains)
 Select chain (if chains: Select - Selection mode - append) - Invert (all mo Atoms/Bonds - delete
 Align structures
 Tools - Structure comparison - MatchMaker
 This is an optional step. It is required if at least one structure of the same prot in prepared files. In such a case select the first structure from the prepared ones by alphabetic order and use it as a reference to align a new one. This will simplify analysis of docking to different X-ray

Fix charges and Hs in mol files. Manual revision of the case	2 months ago
Add a blind docking site box for tubulin	5 months ago
docking files	3 years ago
Fix charges and Hs in mol files. Manual revision of the case	2 months ago
add Uniprot code to folder name and add mol files to ligand	2 months ago
Update README.md	3 months ago
add pdbqt of boron-containing complexes	5 months ago
docking files	3 years ago

red for docking

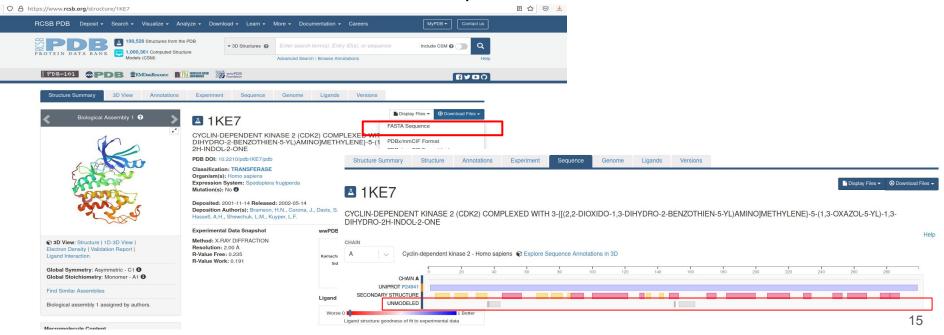
n-ligand complexes prepared for docking in PDB nad PDBQT formats.

cribed in the document Target-prepare_desgn.docx . Please follow it if you contribute a


The repository is composed of directories for individual proteins, where every directory has the following structure:

R

1. Download structure from PDB (<u>https://www.rcsb.org/</u>) using PDBID


Download Files -> PDB Format

2. Download sequence from PDB or from UniProt

Download Files -> Fasta Sequence

- 3. Open Fasta and PDB in **Chimera**
 - a. Fill missing loops by Modeller

Tools -> Sequence -> Sequence

Model	GA341	zDOPE	
#1.1	1.00	-1.52	
#1.2	1.00	-1.53	
#1.3	1.00	-1.45	
#1.4	1.00	-1.55	
#1.5	1.00	-1.61	
#1.6	1.00	-1.60	select the model with
#1.7	1.00	-1.65	Select the model with
#1.8	1.00	-1.52	
#1.9	1.00	-1.50	the lowest zDOPE
#1.10	1.00	-1.59	
#1.11	1.00	-1.48	
#1.12	1.00	-1.55	
#1.13	1.00	-1.60	
#1.14	1.00	-1.60	
#1.15	1.00	-1.49	

Sequence -> Structure -> Modeller (loops/refinement)

	UCSF Chimera	- ~ (\$
Select Actions Presets Tools Fayorites Help		
	rcsb_pdb_1KE7.fasta	
	File Edit Structure Headers Numberings Tree Info Preferences	
	1KE7_1 Chain A sapiens (9606) MENFQKVEKIGEGTYGVVYKARNKLTGEVVALK	IRLDTETEGVPSTAIR
	1KE7_1 Chain A sapiens (9606) EISLLKELNHPNIVKLLDVIHTENKLYLVFEFLH	IQD L K K F M D A S A L T G I P
	1KE7_1 Chain A sapiens (9606) LPLIKSYLFQLLQGLAFCHSHRVLHRDLKPQNLL	INTEGAIKLADFGLAR
	1KE7_1 Chain A sapiens (9606) AFGVPVRTYTHEVVTLWYRAPEILLGCKYYSTAV	
	1KE7_1 Chain A sapiens (9606) ALFPGDSEIDQLFRIFRTLGTPDEVVWPGVTSMF	DYKPSFPKWARQDFSK
1 820	1KE7_1 Chain Asapiens (9606) VVPPLDEDGRSLLSOMLHYDPNKR I SAKAALAHF	FFQDVTKPVPHLRL
	Right-click to focus on residue Right-shift-click to focus on region	Quit Hide Help
The second		

	 active region
Model/remodel:	 Chimera selection region
wode/remodel.	non-terminal missing structure
	c all missing structure
Allow this man to missi	residues adjacent
Number of r	odels to generate: 15
Loop	modeling protocol: standard 🛁
F	un Modeller using: web service 🔜
М	deller license key:
Temporary folder	location (optional): Browse
A. Sali and T. L.	in modelling by satisfaction of spatial restraints.

- 3. Open Fasta and PDB in Chimera
 - b. Dock Prepare

Structure Editing -> Dock Prep

		Dock Prep			8
	es to prep:				
1ke7.pd	b (#U)				
For chos	en molecules, do th	e following:			
✓ Delet	te solvent				
C Dele	te non-complexed io	ns			
🔽 If alte	ernate locations, kee	p only highest occupancy			
	selenomethionin	e (MSE) to methionine (MET)			
Character	promo-UMP (58	U) to UMP (U)			
Change:	wethylselenyl-d	UMP (UMS) to UMP (U)			
	r methylselenyl-d	CMP (CSL) to CMP (C)			
🔽 Incor	mplete side chains:	Replace using Dunbrack 2010	rotamer library	-	
Add	hydrogens				
⊢ Add	charges				
☐ Write	e Mol2 file				
A Smoo Deriv	alov, M.S., and D othed Backbone-D	Dunbrack 2010 rotamers should inbrack, R.L., Jr. (2011) ependent Rotamer Library for Kernel Density Estimates and	r Proteins		
		ОК	Cancel	Hel	P

3. Open Fasta and PDB in **Chimera**

c. Write *protein, ligands, cofactors* objects into separate files

Select -> Residue -> choose ligand or cofactor name

Select -> Structure -> protein

4. Assign non-standard Amber resnames

https://ambermd.org/Questions/HIS.html

AMBER Histidine residues

Histidine (HIS in normal pdb files) is really one of three possible residues:

HID: Histidine with hydrogen on the delta nitrogen

HIE: Histidine with hydrogen on the epsilon nitrogen

 $\label{eq:HIP:Histidine with hydrogens on both nitrogens; this is positively charged.$

It is up to the user to inspect the environment of each histidine and identify the type that is appropriate.

pdb4amber -i protein_H.pdb -o protein_H_HIS.pdb

• Histidine (HID, HIE, HIP)

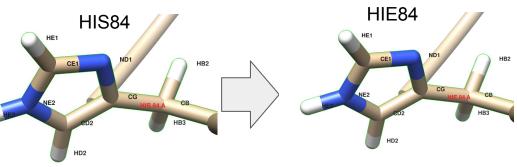
Can be protonated at different nitrogen atoms in its imidazole ring.

• Aspartate (ASP, ASH)

Can be neutral (ASP) or negatively charged (ASH) based on the protonation of the carboxyl group.

• Glutamate (GLU, GLH)

Behaves similarly to aspartate with its carboxyl groups.


• Lysine (LYS, LYN)

Can be protonated or neutral depending on the nitrogen atom in the side chain amine group.

• Cysteine (CYS, CYX)

Cysteines involved in disulfide bridges have a special Amber resname (CYX)

Check visually active site

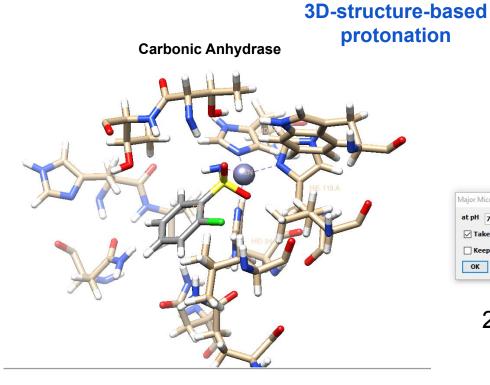
Protein / Ligand preparation

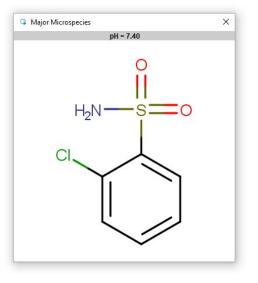
Input Files for MD:

protein_H_HIS.pdb

- no missing non-terminal atoms/residues
- removed non-protein organic molecules
- added all hydrogens
- set non-standard protonation states of residues
- set CYX (Cysteines forming disulfide bridges)

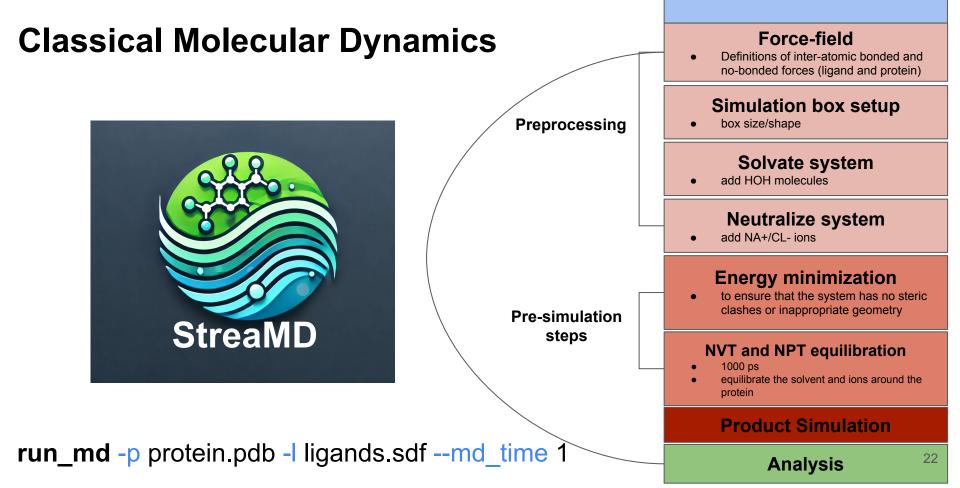
ligand.mol


- correct coordinates
- correct tautomerization
- protonated at 7.4 pH / 3d-structure-based protonation (e.g. Chimera) / or user manual protonation (added all hydrogens)


Ligand preparation

pH-based protonation (pH 7.4)

2-CHLOROBENZENESULFONAMIDE


	0 II
H ₂ N	—ș=0
CL	
ļ	
jor Microspecies Opti	ions X
	ions ×
t pH 7.4	
jor Microspecies Opti t pH 7.4 7 Take major tauto Keep explicit hydr	meric form

2WEH

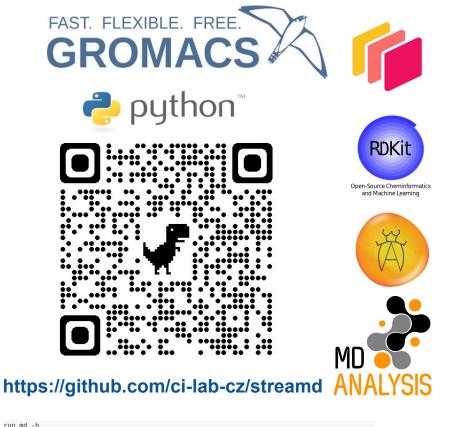
Structure Preparation

Journal of Cheminformatics

Home About Articles Submission Guidelines About The Editors Calls For Papers

Submit manuscript 🗇

Software Open access Published: 05 November 2024


StreaMD: the toolkit for high-throughput molecular dynamics simulations

Aleksandra Ivanova, Olena Mokshyna & Pavel Polishchuk

Journal of Cheminformatics 16, Article number: 123 (2024) Cite this article

2072 Accesses | 1 Citations | 6 Altmetric | Metrics

run_ma -n

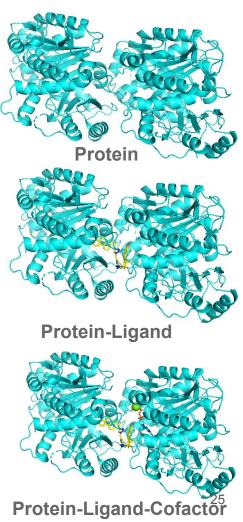
usage: run_md [-h] [-p FILENAME] [-d WDIR] [-1 FILENAME] [--cofactor FILENAME] [--clean_previon [--topol_itp topol_chainA.itp topol_chainB.itp [topol_chainA.itp topol_chainB.it] [--protein_forcefield amber99sb-ildn] [--md_time ns] [--npt_time ps] [--nvt_time [--wdir_to_continue DIRNAME [DIRNAME ...]] [--deffnm preffix for md files] [--tpi [--ligand_list_file all_ligand_resid.txt] [--ligand_lid UNL] [--activate_gaussian [--gaussian_exe g09 or /apps/all/Gaussian/09-d01/g09/g09] [--gaussian_basis B3LYI [--metal_cutoff 2.8] [--metal_charges {MN:2, ZN:2, CA:2}]

Run or continue MD simulation. Allowed systems: Protein, Protein-Ligand, Protein-Cofactors(mult

How to run (minimal examples)

To run simulation:

run_md -p protein.pdb -l ligands.sdf --md_time 1

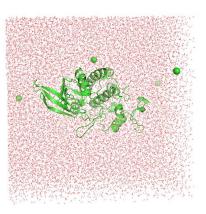

<u>To extend simulation:</u> **run_md** --wdir_to_continue md_files/md_run/protein_ligand_*/ --md_time 2

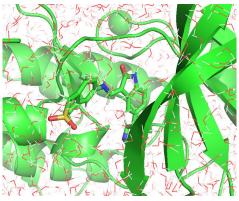
<u>G(P)BSA calculations:</u> **run_gbsa** --wdir_to_run md_files/md_run/protein_ligand_* <u>ProLIF calculations:</u> **run_prolif** --wdir_to_run md_files/md_run/protein_ligand_*

Main features of StreaMD:

- GROMACS engine
- Default set of optimal parameters for calculations, which can be customized
- Support of simulations of different molecular systems in explicit water solvent:
 - protein only, protein-ligand, protein-cofactor(s), protein-ligand-cofactor(s)
- Support of modeling of boron-containing molecules
 - RESP charges calculation using Gaussian tool
- Support of Building Bonded Model for A Ligand Binding Metalloprotein with MCPB.py
 - to simulate proteins with specific metal ions not parametrized in commonly used FF
- The ability to continue interrupted or to expand already finished simulations
- Support of distributed computing using Dask library across a network of servers or cluster
- GPU calculations support

Main features of StreaMD:


- Automatic analysis of simulation:
 - separate RMSD plots for protein, ligand and cofactors objects
 - a plot of flexibility of side chains of amino acids (RMSF)
 - a plot and a pdb file with radius of gyration
 - a single frame pdb file for the topology and a short subset of the trajectory for the quick visual inspection
 - a fitted trajectory (with removed periodic boundary conditions, aligned and centered on the first frame) to use for energy or protein-ligand interaction calculations
 - interactive trajectory convergence analysis for multiple complexes
- Support of analysis by additional instruments:
 - *ProLIF*: Ligand-Protein interactions (time-dependent function, stability analysis)
 - https://github.com/chemosim-lab/ProLIF
 - gmx_MMPBSA: Calculation of Binding Energy by MM(PB)GBSA
 - <u>https://github.com/Valdes-Tresanco-MS/gmx_MMPBSA</u>

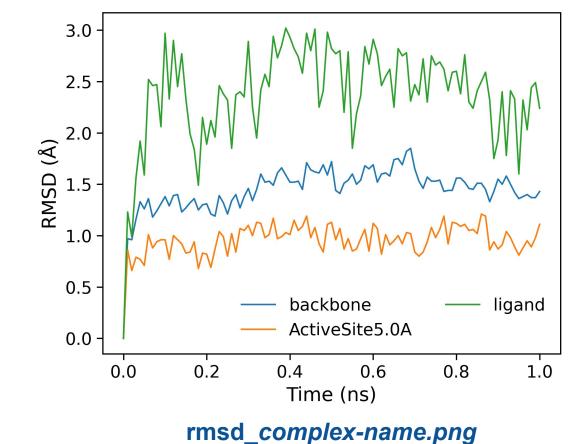


Check your own MD simulations

mdrun/md_files/md_run/protein_H_HIS_ligand

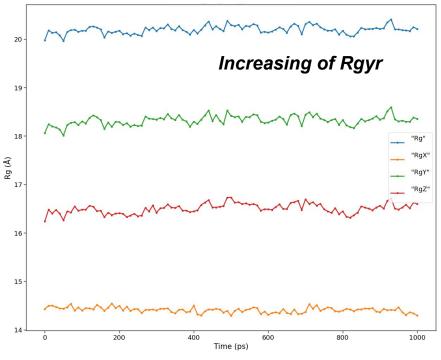
mdrun/md_files/md_run/protein_H_HIS_ligand/md_analysis

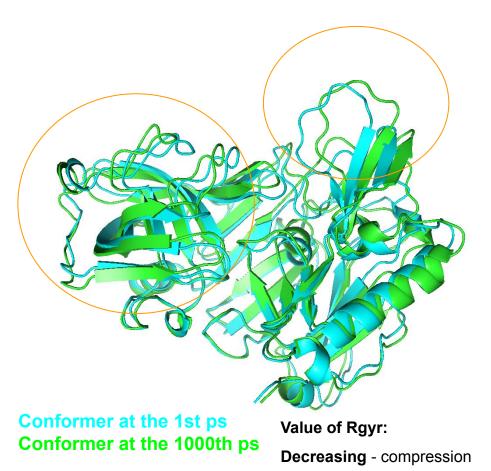
StreaMD Analysis Output Files


System stability & issues	Pose stability & System issues		
potential.png	rmsd_complex-name.png		
density.png	gyrate_complex-name.png		
pressure.png	rmsf_complex-name.png		
temperature.png	rmsd_mean_std_time-ranges_time.html		

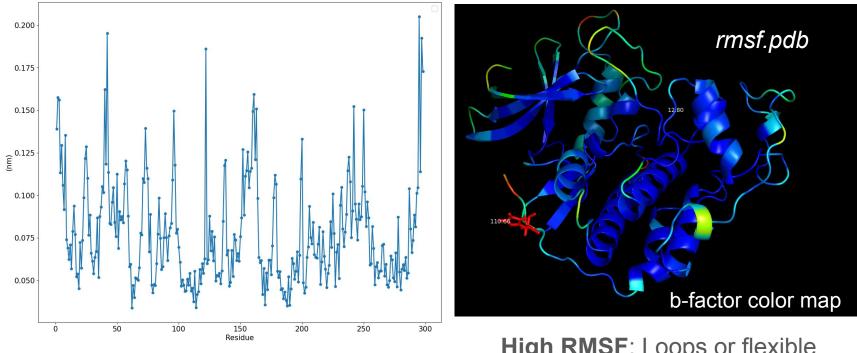
Minimization & Equilibration stages

Production Simulation




Root mean square deviation of atomic positions

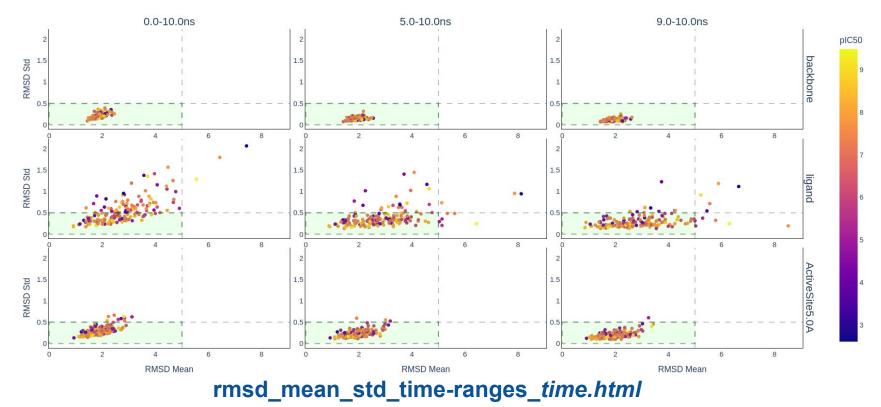
Radius of gyration (total and around axes)



gyrate_complex-name.png

Increasing - extension ³⁰

Root mean square fluctuation (RMSF, i.e. standard deviation)


rmsf_complex-name.png

High RMSF: Loops or flexible regions. Disordered structure

Trajectory convergence analysis

Interactive html files help to identify converged segments of trajectories

The **average RMSD** provides insight into ligand movement or rotation relative to its initial pose, while the **standard deviation** reflects the stability of the ligand pose within the selected trajectory segment.

MMPBSA / MMGBSA

End-state free energy calculations with GROMACS files

- to estimate binding affinity of protein-ligand complexes
- Molecular mechanics Poisson–Boltzmann surface area (MM/PBSA)
- Molecular mechanics generalized Born surface area (MM/GBSA)

$$\Delta G_{\rm bind} = G_{\rm RL} - G_{\rm R} - G_{\rm L} \tag{4}$$

can be decomposed into contributions of different interactions and expressed as (58)

$$\Delta G_{\text{bind}} = \Delta H - T\Delta S = \Delta E_{\text{MM}} + \Delta G_{\text{sol}} - T\Delta S \tag{5}$$

in which

$$\Delta E_{\rm MM} = \Delta E_{\rm int} + \Delta E_{\rm ele} + \Delta E_{\rm vdW} \tag{6}$$

$$\Delta G_{\rm sol} = \Delta G_{\rm PB/GB} + \Delta G_{\rm SA} \tag{7}$$

$$\Delta G_{\rm SA} = \gamma \cdot {\rm SASA} + b \tag{8}$$

34

Valdés-Tresanco, M.S., Valdés-Tresanco, M.E., Valiente, P.A. and Moreno E. *gmx_MMPBSA: A New Tool to Perform End-State Free Energy Calculations with GROMACS.* Journal of Chemical Theory and Computation, 2021 17 (10), 6281-6291. <u>https://pubs.acs.org/doi/10.1021/acs.jctc.1c00645</u>. *MMPBSA.py:* An Efficient Program for End-State Free Energy Calculations Bill R. Miller III, T. Dwight McGee Jr., Jason M. Swails, Nadine Homeyer, Holger Gohlke, and Adrian E. Roitberg Journal of Chemical Theory and Computation 2012 8 (9), 3314-3321 DOI: 10.1021/ct300418h

MMPBSA / MMGBSA

 to estimate binding affinity of protein-ligand complexes

Total G_{Binding}=

- Gas-phase molecular mechanics energy ΔE_{MM} :
 - Changes in the internal energies dihedral energies)
 - electrostatic energies ΔE_{ele}
 - van der Waals energies <u>AE_{vdV}</u>
- Electrostatic solvation energy G_{sol}
 - **The polar contribution** is calculated using either the PB or GB model (\triangle GPB/GB). Where the GB method gives an analytical expression for the polar solvation energy and is thus much faster than the PB method.
 - nonpolar energy is usually estimated using the solvent-accessible surface area (SASA)
- The change in **conformational entropy** –**TΔS**
 - is usually calculated by normal-mode analysis (or Interaction entropy) on a set of conformational snapshots taken from MD simulations.

Free binding energy is calculated as the difference in free energy between **the bound** and **unbound** states of the molecules. Where **the free energy** is derived from:

In the MM/PBSA or MM/GBSA approach, the free energy for binding of the ligand (L) to the protein receptor (R) to form the complex (RL),

$$\Delta G_{\rm bind} = G_{\rm RL} - G_{\rm R} - G_{\rm L} \tag{4}$$

can be decomposed into contributions of different interactions and expressed as (58)

$$\Delta G_{\rm bind} = \Delta H - T\Delta S = \Delta E_{\rm MM} + \Delta G_{\rm sol} - T\Delta S \tag{5}$$

in which

$$\Delta E_{\rm MM} = \Delta E_{\rm int} + \Delta E_{\rm ele} + \Delta E_{\rm vdW}$$
(6)
$$\Delta G_{\rm sol} = \Delta G_{\rm PB/GB} + \Delta G_{\rm SA}$$
(7)

 $\Delta G_{\rm SA} = \gamma \cdot {\rm SASA} + b \tag{8}$

35

MMPBSA.in

```
Sample input file for PB/GB calculation
#This input file is meant to show only that gmx_MMPBSA works. Although, we tried to use the input
files as recommended in the
#Amber manual, some parameters have been changed to perform more expensive calculations in a
reasonable amount of time. Feel free to change the parameters
#according to what is better for your system.
&general
sys_name="PB_GB_IE",
startframe=1, interval=1, verbose=2, PBRadii=3,
interaction_entropy=1, ie_segment=100, temperature=310
/
&gb
igb=5, saltcon=0.150,
/
&pb
istrng=0.15, fillratio=4.0, radiopt=0, indi=1, exdi=80.0
```

run_gbsa -i mdrun/md_files/md_run/protein_HIS_ligand/

10.44 45.94 22.15 -3.17 95.19 8.18 -225.44 -36.44 3.63 -46.70	1.76 3.47 2.81 0.66 1.06 0.73 1.28 1.07 0.02	2.81 0.66 1.06	1.05 0.85 0.20 0.32 0.22	1.05 0.85 0.20 0.32 0.22
22.15 -3.17 95.19 8.18 -225.44 -36.44 3.63 -46.70	2.81 0.66 1.06 0.73 1.28 1.07	2.81 0.66 1.06 0.73 1.28 1.07	0.85 0.20 0.32 0.22 0.38	0.85 0.20 0.32 0.22
-3.17 95.19 8.18 -225.44 -36.44 3.63 -46.70	0.66 1.06 0.73 1.28 1.07	0.66 1.06 0.73 1.28 1.07	0.20 0.32 0.22 0.38	0.20 0.32 0.22
95.19 8.18 -225.44 -36.44 3.63 -46.70	1.06 0.73 1.28 1.07	1.06 0.73 1.28 1.07	0.32 0.22 0.38	0.32 0.22
8.18 -225.44 -36.44 3.63 -46.70	0.73 1.28 1.07	0.73 1.28 1.07	0.22 0.38	0.22
-225.44 -36.44 3.63 -46.70	1.28 1.07	1.28 1.07	0.38	
-36.44 3.63 -46.70	1.07	1.07		
3.63 -46.70			0 22	0.38
-46.70	0.02	0.02	0.52	0.32
			0.01	0.01
	5.17	4.07	1.56	1.23
-32.81	1.07	1.07	0.32	0.32
-79.51	5.28	4.12	1.59	1.24
		SD	SEM(Prop.)	SEM
-0.00	0.83	0.00	0.25	0.00
-0.00	2.81	0.00	0.85	0.00
	2.53	0.00	0.76	0.00
	0.57			0.84
	0.26			1.82
0.00	0.54	0.00	0.16	0.00
		0.00	0.14	0.00
		3.93	0.06	1.18
-6.08	0.01	0.11	0.00	0.03
-82.35				
43.55	0.19	3.94	0.06	1.19
-38.80	0.65	3.12	0.20	0.94
	ptor - Ligar Average -0.00 -0.00 0.00 -45.23 -37.12 0.00 0.00 49.63 -6.08 -82.35 43.55	ptor - Ligand): Average SD(Prop.) -0.00 0.83 -0.00 2.81 0.00 2.53 -45.23 0.57 -37.12 0.26 0.00 0.54 0.00 0.45 49.63 0.19 -6.08 0.01 -82.35 0.62 43.55 0.19	ptor - Ligand): Average SD(Prop.) SD -0.00 0.83 0.00 -0.00 2.81 0.00 0.00 2.53 0.00 -45.23 0.57 2.79 -37.12 0.26 6.03 0.00 0.54 0.00 0.00 0.45 0.00 49.63 0.19 3.93 -6.08 0.01 0.11 -82.35 0.62 5.83 43.55 0.19 3.94	ptor - Ligand): Average SD SEM(Prop.) -0.00 0.83 0.00 0.25 -0.00 2.81 0.00 0.85 0.00 2.53 0.00 0.76 -45.23 0.57 2.79 0.17 -37.12 0.26 6.03 0.08 0.00 0.54 0.00 0.16 0.00 0.45 0.00 0.14 49.63 0.19 3.93 0.06 -6.08 0.01 0.11 0.00 -82.35 0.62 5.83 0.19 43.55 0.19 3.94 0.06

PBSA

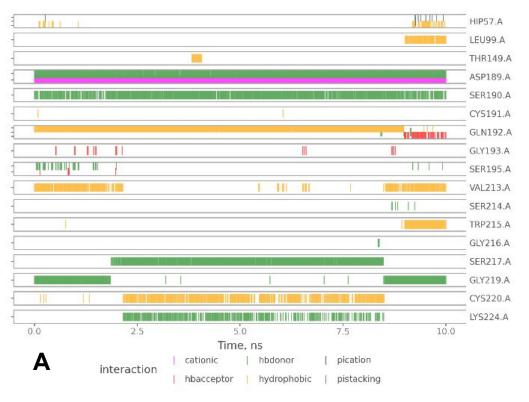
A	B	C	
fname	∆G_binding	∆G_binding_+/-	
protein_HIS_igand_1	-35.81	0.74	

GBSA

fname	∆G_binding	∆G_binding_+/-
protein_HIS_ligand_1	-24.31	4.1

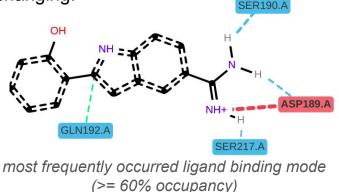
MMPBSA Energy and MMGBSA Energy cannot be compared within the

<u>different methods.</u> But you can rank your molecules by energies obtained from each method separately.

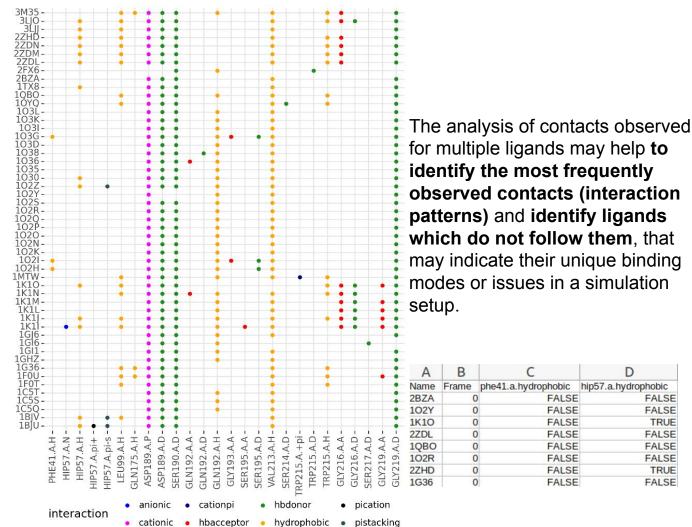


ProLIF (Protein-Ligand Interaction Fingerprints)

run_prolif -i mdrun/md_files/md_run/protein_HIS_ligand/



Protein-Ligand Interaction Fingerprints


Protein-ligand interactions detected for the trypsin dataset. (a) Occurrence of contacts in course of simulation detected for 1Gl6 protein-ligand complex during 10 ns MD simulation. What information can we retrieve from analysis of protein-ligand interactions?

- By default, the tool creates 2 types of protein-ligand interactions analysis outputs
- The analysis of individual protein-ligand systems may show which contacts are co-occurred and how these groups of contacts change during the simulation that may suggest ligand moving or pose changing.

Interaction fingerprints for the whole trypsin dataset occurred in at least 60% of frames of 10 ns MD trajectories

D

FALSE

FALSE

TRUE

FALSE

FALSE

FALSE

TRUE

FALSE

hip57.a.hydrophobic

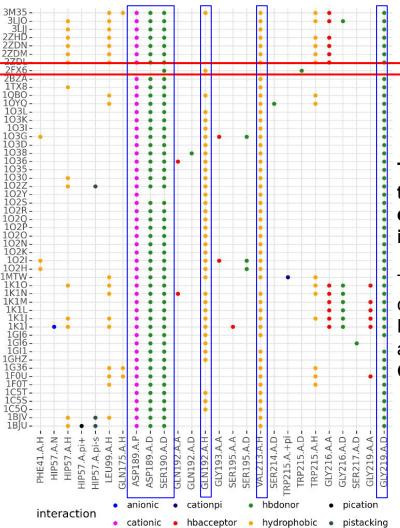
FALSE

FALSE

FALSE

FALSE

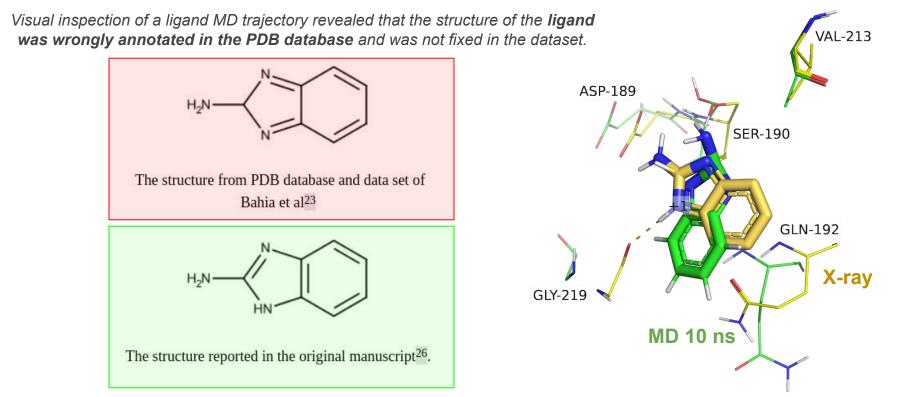
FALSE


FALSE

FALSE

FALSE

Ligand from **2FX6** complex did not follow this pattern.



The analysis of the whole set of trypsin inhibitors revealed as expected the common interaction pattern.

The majority of ligands have charged interaction with **Asp189**, H-bonds with **Ser190** and **Gly219** and hydrophobic interactions with **Gln192** and **Val213**.

Protein-Ligand Interaction Fingerprints

The bond orders were incorrectly interpreted, that results in wrong geometry of the structure and that the **ligand started to move away from its initial pose** and could not form expected contacts.

Availability and requirements

- Project name: StreaMD
- GitHub: https://github.com/ci-lab-cz/streamd
- **Operating system(s):** Linux
- Programming language: Python 3
- **Other requirements:** GROMACS, RDKit, ProLIF, Antechamber, MDAnalysis, Dask, Gaussian (optional, a license is required)
- License: MIT

Any restrictions to use by non-academics: no

Thank you for your attention!

https://github.com/ci-lab-cz/streamd

This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic through INTER-EXCELLENCE II LUAUS23262, the e-INFRA CZ (ID:90254), ELIXIR-CZ (LM2018131, LM2023055), CZ-OPENSCREEN (LM2018130, LM2023052) grants and by European and Regional Fund project ENOCH (No. CZ.02.1.01/0.0/0.0/16_019/0000868).