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Computations in Drug Discovery 
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– SBDD: 3D Structure of Target

– LBDD: 2D of Actives/Inactives 

Martin Lepšík | 28-01-2025

Save Time & Money
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SBDD

– X-ray crystallographic refinement 

– Hit Identification (Virtual Screening)

– Docking

– Scoring

LBDD

– Partial charges

– Bioactive conformations 

– pKa predictions

Martin Lepšík | 28-01-2025
Current Opinion in Structural Biology 2024, 87:102870



Structure-based Affinity Prediction
6

Standard Scoring Functions (SFs)

– ultrafast (seconds) 

 – low accuracy

Machine-Learning (M-L)

  – ultrafast (seconds)

  – ? training data/accuracy,

  – ? applicability domain

Free Energy Methods (FEP)

– slow on GPU (days)

 – variable accuracy

Standard Quantum Mechanics (DFT)

 – slow on 10s CPU (days)

 – accurate 

 – ? applicable to biomolecules

Data-driven Physics-based



Why Quantum Mechanics?

–  all types of non-covalent interactions

–  dispersion, H-bonding, halogen bonding, etc.

– quantitative description 

– metal interactions

– polarization, charge transfer

– covalent binding

– no parametrization of ligands

J. Phys. Chem. B 2013,117, 14973 J. Chem. Inf. Model. 2017, 57, 127 ACS Chem. Biol. 2013, 8, 2484

J. Phys. Chem. B, 2010, 114, 12666
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Which QM method?

CCSD(T)
– slow (weeks; 100s CPUs)
– N4-N7 scaling with system size

DFT-D
– moderate (days; 10s CPUs)
– biomolecular (100s atoms)

SQM
– fast (minutes; 1 CPU)
– linear-scaling
– 1000s atoms

8



Non-covalent Interactions by SQM
Large errors in 15 protein-ligand complexes 
CCSD(T) reference



CCSD(T) Interaction Energies in Small Models

● accurate calculations in vacuum
● S66 benchmark dataset: H-bonding, dispersion
● www.nciatlas.org (~ 20,000 data points)
● hydrogen bonding, dispersion, sigma-hole interactions, repulsion

● Development of semiempirical QM methods - corrections for non-covalent 
interactions

● chemical accuracy (1 kcal/mol) in small dimers

Řezáč, J., Hobza P.  Chem. Rev. 2016, 116, 9, 5038



Corrected SQM Methods
Errors in 15 protein-ligand complexes, 

CCSD(T) reference

Řezáč et al.; J. Chem. Theory Comput. 2009, 5, 1749; Řezáč and Hobza.; J. Chem. Theory Comput. 2012, 8,141; 
Řezáč; J. Chem. Theory Comput. 2017, 13, 4804

● Fast calculation
● Easy preparation

(no system-specific parameters)
● Accuracy?

PM6-D3H4X



COSMO2 Implicit Solvation Model

● reparametrisation of COSMO
● adding non-polar solvation
● single-point energies only

Kříž, K. & Řezáč, J. J. Chem. Inf. Model. 2019, 59, 229

- neutral (gray)
- cations (red)
- anions (blue)
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SQM2.20 =     ΔEint

+ ΔΔGsolv

+ ΔGconf,w(L) 

+ ΔGH+

– TΔS

SQM-based Scoring Function

PM6-D3H4X + further corrections

PM6/COSMO2

PM6-D3H4X/COSMO2 optimization

LM5 model fitted to QM data

Fanfrlík et al.; J. Phys. Chem. B 2010, 114, 12666

PM6-D3H4X/COSMO2 difference

Modular physics-based approach: 
• MM/GBSA-like
• components can be replaced  

if better alternatives exist



Application of SQM-based Scoring

Ranking, interaction analysis 
22 publications (since 2010)

● Cyclin-Dependent Kinases (Cancer) - 5

● Carbonic Anhydrases (Cancer) - 3

● Cathepsins (Schistosomiasis) - 4

● Serine Racemase (neuropathologies) - 1

● Aldose-Reductases (Diabetes) - 3

● Insulin Analogues (Diabetes) - 1

● HIV Protease (AIDS) - 2

● Trypsin/Chymotrypsin (cancer) -1

● Polymerases (Influenza) - 2

Sampling and virtual screening
4 publications (since 2016)

● 2 sampling studies on 4 proteins
○ Acetylcholine esterase (Alzheimer's 

disease)
○ TACE/ADAM17 (inflammation)
○ Aldose-Reductases (Diabetes)
○ HIV Protease (AIDS)

● + 17 proteins in wider sampling study
○ incl. Hepatitis C RNA polymerase,

Glutathione S-transferase (cancer 
resistance)

● Virt. screening - Heat shock protein (cancer)

Reviews: ChemPlusChem 2013, 78, 921; ChemPlusChem 2020, 85, 2362



Is SQM-based Scoring Universal?
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● Reproducibility from multiple independent 
measurements: R2 = 0.8 

● Datasets for Free Energy Perturbation (FEP)

COMMUNICATIONS CHEMISTRY | (2023) 6:222 |



Building high-quality dataset

PL-REX: Protein-Ligand / Reliable Experiment data set

• 10 targets: 10+ ligands per each
• High-resolution crystal structures
• Affinities measured in one lab (Ki preferred over IC50)
• careful preparation of each protein

Nat. Commun. 2024, 15, 1127; https://github.com/Honza-R/PL-REX 

https://github.com/Honza-R/PL-REX


Challenging Cases in PL-REX dataset

Carbonic anhydrase II

Casein kinase 2

HIV
protease

Trypsin
• Large flexible ligands 
• Halogen bonding
• Binding via metal
• Protonation upon binding
• Water bridging protein and ligand



Standard Scoring Functions

● Best SFs in the CASF2016 set[1]

● Few more used previously in the group
● Structure-based machine learning

Timing:

● Empirical SFs <= seconds

● SQM-score ~ 20 minutes R 0.7 ⇒ R2 0.5

Scoring after
MM optimization

Su, M. et al., J. Chem. Inf. Model., 2019, 59, 895.



Scoring on PL-REX

Correlation with experimental affinities, averaged over 10 targets



Correlation with experiment, averaged over 10 targets

Scoring on PL-REX



Correlation with experiment, averaged over 10 targets

Comparison with Scoring Functions



Correlation with experiment, averaged over 10 targets

Comparison with Scoring Functions



P-L complex geometry

● determines the quality of scoring 

● SQM score on different geometries

Nat. Commun. 2024, 15, 1127



SQM2.20 vs. MM or DFT

• SQM: universal performance across targets

• AMBER geometries deteriorate SQM2.20 

scoring in some targets 

• AMBER scoring: low performance

•  SQM2.20 comparable to DFT 

• SQM2.20 is fast (20 min/system on 1CPU) 

    vs. DFT with ~103 CPU-hours / system)

Nat. Commun. 2024, 15, 1127



End-point Methods

• scoring (seconds, 1CPU)

• SQM2.20 (minutes, 1CPU)

• DFT (hours/days, multi CPU/GPU)

Ensemble Methods

• FEP (hours/days, multi CPU/GPU)

Affinity Prediction: Timing



Comparison of SQM2.20 to FEP+



Wang Dataset for Free Energy Perturbation

33

R2 = 0.56

Wang L et al., J. Am. Chem. Soc. 2015, 137, 2695−2703

Schrodinger FEP+
● 8 targets, 10-40 ligands each, similar
● Automatic preparation
● Free-Energy Perturbation 
● OPLS 2.1 force field
● REST enhanced sampling
● GPU



• SQM2.20 limited by lack of reliable initial structures (severe clashes from 
docking/modeling)

• simple fixes improve correlations
• further improvements expected after complex refinement of structures

Target num. of ligands avg. Tanimoto FEP+ SQM2.20 SQM2.20/fixed

BACE 36 0.71 0.61 0.00 0.23

CDK2 16 0.84 0.23 0.29 0.56

JNK1 21 0.85 0.72 0.16 0.19

MCL1 42 0.67 0.59 0.58 0.58

p38 34 0.77 0.42 0.25 0.36

PTP1B 23 0.79 0.64 0.55 0.55

thrombin 11 0.84 0.50 0.63 0.66

Tyk2 16 0.84 0.79 0.58 0.62

AVERAGE 25 0.79 0.56 0.38 0.47

SQM2.20 vs. FEP+ on Wang Dataset
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● automatic protocol for selecting best poses from docking
● SQM identifies the native pose reliably

Docking

Ligands
 in 2D

Protein

Pool of 
poses

Few best 
poses

SQM-based
filter

Final pose 
and score

SQM2.20
scoring

Pecina et al.; Chem. Commun. 2016, 52, 3312
Pecina et al.; J. Chem. Inf. Model. 2017, 57, 127

Integrating SQM Scoring with Docking



Native Pose Identification

● diverse set of 17 protein-ligand systems

● SQM and 8 standard scoring functions

● false positive = a pose with better score 

than crystal (ideal: zero false positives)

● SQM has 4-12-times less FPs than the 

standard SFs

Chem. Commun. 2016, 52, 3312; J. Chem. Inf. Model. 2017, 57, 127; ACS Omega 2017, 2, 4022
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7Local Sampling via Molecular Dynamics

– occupancies of H-bonds and non-

polar contacts throughout MD



Virtual Glycine Scan of Insulin - Receptor

Eur. J. Org. Chem. 2018, 5203–5211 Miloš Halda, poster



SQM2.20: Universal Physics-based 

Quantum Mechanical Scoring

• Reliable affinity predictions (“DFT accuracy”)

• Reasonable computational cost (20min/1CPU/compound)

• Insightful details of P-L binding (SQM geometries + energetics)

• Tested on diverse set of curated data 

• publicly available PL-REX: 10 proteins, >150 ligands, structures, affinities

• Superior to quick approaches to ranking (MM, standard SFs and M-L)

• Comparable to FEP+ 
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Thank you for your attention



QM/MM Setup
● Internal moving QM part

● Intermediate QM static part

● Outside fixed



Towards Virtual Screening

● Heat shock protein (HSP90); cancer 

and immunity

● 72 biologically active compounds + 

4469 structurally similar compounds 

(DUD-E decoys)

● Enrichment factor (EF1) and ROC 

curves (AUC%),

where random is (1, 50%)

and ideal (63, 100%)

Eyrilmez et al.; ChemPhysChem 2019, 20, 2759

EF1 AUC%
1 50
47 98
7 75
4 71
1 49
0 30
0 34
3 76
0 34
0 60
1 51
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