Methods in Molecular Biology 2114

Springer Protocols

Alexander Heifetz Editor

Quantum Mechanics in Drug Discovery

Book © 2020

EUR 213.99

8ADD, Olomouc, Jan 2025

Martin Lepšík

Computational Chemistry for Drug Design

Group leader: Jan Řezáč

ÚOCHB ∰ IOCB PRAGUE

Outline

- 1. Computer-aided drug design
- 2. SQM Scoring
- 3. Experimental datasets (structures and affinities)
- 4. Extensions of SQM (docking, VGS)
- 5. Insulin Receptor Case Study

Outline

1. Computer-aided drug design

- 2. SQM Scoring
- 3. Experimental datasets (structures and affinities)
- 4. Extensions of SQM (docking, VGS)
- 5. Insulin Receptor Case Study

Drug Development: A Lengthy, Costly, Risky Bussiness

Nat Rev Drug Discov 9, 203–214 (2010)

Drug Development: A Lengthy, Costly, Risky Bussiness

Nat Rev Drug Discov 9, 203–214 (2010)

Computations in Drug Discovery

Computer-aided drug design - SBDD: 3D Structure of Target (CADD) - LBDD: 2D of Actives/Inactives Structure-based drug design Ligand-based drug design (SBDD) (LBDD) Quantitative structure-activity Binding site identification relationship (QSAR) Pharmacophore modeling **Docking and Scoring** Virtual screening Save Time & Money Compound selection

Martin Lepšík | 28-01-2025

Types of Computations

SBDD

- X-ray crystallographic refinement
- Hit Identification (Virtual Screening)
- Docking
- Scoring

LBDD

- Partial charges
- Bioactive conformations
- pK_a predictions

Current Opinion in Structural Biology 2024, 87:102870

Martin Lepšík | 28-01-2025

Structure-based Affinity Prediction

Standard Scoring Functions (SFs)

- ultrafast (seconds)
- low accuracy

Machine-Learning (M-L)

- ultrafast (seconds)
- -? training data/accuracy,
- -? applicability domain

Free Energy Methods (FEP) – slow on GPU (days) – variable accuracy

Standard Quantum Mechanics (DFT)

- slow on 10s CPU (days)
- accurate
- -? applicable to biomolecules

Why Quantum Mechanics?

- all types of non-covalent interactions
- dispersion, H-bonding, halogen bonding, etc.
- quantitative description
- metal interactions
- -polarization, charge transfer
- covalent binding
- no parametrization of ligands

J. Phys. Chem. B 2013,117, 14973

J. Chem. Inf. Model. 2017, 57, 127

ACS Chem. Biol. 2013, 8, 2484

Which QM method?

CCSD(T)

- slow (weeks; 100s CPUs)
- $N^4 N^7$ scaling with system size

DFT-D

- moderate (days; 10s CPUs)
- biomolecular (100s atoms)

SQM

- fast (minutes; 1 CPU)
- linear-scaling
- 1000s atoms

Non-covalent Interactions by SQM

Large errors in 15 protein-ligand complexes CCSD(T) reference

CCSD(T) Interaction Energies in Small Models

- Development of semiempirical QM methods corrections for non-covalent interactions
- chemical accuracy (1 kcal/mol) in small dimers

Řezáč, J., Hobza P. Chem. Rev. 2016, 116, 9, 5038

Corrected SQM Methods

Errors in 15 protein-ligand complexes, CCSD(T) reference

- Fast calculation
- Easy preparation (no system-specific parameters)
- Accuracy?

Řezáč et al.; J. Chem. Theory Comput. 2009, 5, 1749; Řezáč and Hobza.; J. Chem. Theory Comput. 2012, 8,141; Řezáč; J. Chem. Theory Comput. 2017, 13, 4804

COSMO2 Implicit Solvation Model

- reparametrisation of COSMO
- adding non-polar solvation
- single-point energies only

Kříž, K. & Řezáč, J. J. Chem. Inf. Model. 2019, 59, 229

COSMO2 Implicit Solvation Model

- reparametrisation of COSMO
- adding non-polar solvation
- single-point energies only

Kříž, K. & Řezáč, J. J. Chem. Inf. Model. 2019, 59, 229

Outline

- 1. Computer-aided drug design
- 2. SQM Scoring
- 3. Experimental datasets (structures and affinities)
- 4. Extensions of SQM (docking, VGS)
- 5. Insulin Receptor Case Study

SQM-based Scoring Function

Modular physics-based approach:

- MM/GBSA-like
- components can be replaced if better alternatives exist

CHEMPLUSCHEN

or In Silico Drug Design

The Semiempirical Quantum Mechanical Scoring Function

ChemPubSo

Fanfrlík et al.; J. Phys. Chem. B 2010, 114, 12666

Lepšík et al.; ChemPlusChem 2013, 78, 921

Application of SQM-based Scoring

Ranking, interaction analysis

22 publications (since 2010)

- Cyclin-Dependent Kinases (Cancer) 5
- Carbonic Anhydrases (Cancer) 3
- Cathepsins (Schistosomiasis) 4
- Serine Racemase (neuropathologies) 1
- Aldose-Reductases (Diabetes) 3
- Insulin Analogues (Diabetes) 1
- HIV Protease (AIDS) 2
- Trypsin/Chymotrypsin (cancer) -1
- Polymerases (Influenza) 2

Sampling and virtual screening *4 publications (since 2016)*

- 2 sampling studies on 4 proteins
 - Acetylcholine esterase (Alzheimer's disease)
 - TACE/ADAM17 (inflammation)
 - Aldose-Reductases (Diabetes)
 - HIV Protease (AIDS)
- + 17 proteins in wider sampling study
 - incl. Hepatitis C RNA polymerase, Glutathione S-transferase (cancer resistance)
- Virt. screening Heat shock protein (cancer)

Reviews: ChemPlusChem 2013, 78, 921; ChemPlusChem 2020, 85, 2362

Is SQM-based Scoring Universal?

Outline

- 1. Computer-aided drug design
- 2. SQM Scoring
- 3. Experimental datasets (structures and affinities)
- 4. Extensions of SQM (docking, VGS)
- 5. Insulin Receptor Case Study

The experiment is the limit

Building high-quality dataset

PL-REX: Protein-Ligand / Reliable Experiment data set

- 10 targets: 10+ ligands per each
- High-resolution crystal structures
- Affinities measured in one lab (K_i preferred over IC_{50})
- careful preparation of each protein

Nat. Commun. 2024, 15, 1127; https://github.com/Honza-R/PL-REX

Challenging Cases in PL-REX dataset

- Large flexible ligands
- Halogen bonding
- Binding via metal
- Protonation upon binding
- Water bridging protein and ligand

Standard Scoring Functions

- Best SFs in the CASF2016 set^[1]
- Few more used previously in the group
- Structure-based machine learning

Timing:

- Empirical SFs <= seconds
- SQM-score ~ 20 minutes

Su, M. et al., J. Chem. Inf. Model., 2019, 59, 895.

Scoring on PL-REX

Correlation with experimental affinities, averaged over 10 targets

Scoring on PL-REX

Correlation with experiment, averaged over 10 targets

Comparison with Scoring Functions

Correlation with experiment, averaged over 10 targets

Comparison with Scoring Functions

Correlation with experiment, averaged over 10 targets

P-L complex geometry

- determines the quality of scoring
- SQM score on different geometries

Nat. Commun. 2024, 15, 1127

nature communications

https://doi.org/10.1038/s41467-024-45431-8

6

SQM2.20: Semiempirical quantummechanical scoring function yields DFT-quality protein–ligand binding affinity predictions in minutes

Received: 20 July 2023

Article

SQM2.20 vs. MM or DFT

- SQM: universal performance across targets
- AMBER geometries deteriorate SQM2.20 scoring in some targets
- AMBER scoring: low performance
- SQM2.20 comparable to DFT
- SQM2.20 is fast (20 min/system on 1CPU) vs. DFT with ~10³ CPU-hours / system)

	Default Model (~2,000 atoms)			Trimmed Model (~1,000 atoms)		
Dataset	SQM2.20	SQM2.20 //AMBER	AMBER	SQM2.20	DFT score	
01-CA2	0.67	0.36	0.28	0.63	0.85	
02-HIV-PR	0.75	0.70	0.33	0.71	0.61	
03-CK2	0.81	0.70	0.40	0.79	0.53	
04-AR	0.70	0.56	0.01	0.60	N.D.	
05-Cath-D	0.66	0.22	0.23	0.70	0.66	
06-BACE1	0.63	0.57	0.37	0.37	0.25	
07-JAK1	0.56	0.57	0.03	0.59	0.49	
08-Trypsin	0.75	0.73	0.54	0.61	0.79	
09-CDK2	0.61	0.20	0.07	0.56	0.50	
10-MMP12	0.74	0.62	0.03	0.81	0.69	
Average	0.69	0.52	0.23	0.62 (0.67*)	0.64*	

Nat. Commun. 2024, 15, 1127

Affinity Prediction: Timing

End-point Methods

- scoring (seconds, 1CPU)
- SQM2.20 (minutes, 1CPU)
- DFT (hours/days, multi CPU/GPU)

Ensemble Methods

• FEP (hours/days, multi CPU/GPU)

Comparison of SQM2.20 to FEP+

Wang Dataset for Free Energy Perturbation

Schrodinger FEP+

- 8 targets, 10-40 ligands each, similar
- Automatic preparation
- **Free-Energy Perturbation**
- OPLS 2.1 force field
- **REST** enhanced sampling
- GPU

SQM2.20 vs. FEP+ on Wang Dataset

Target	num. of ligands	avg. Tanimoto	FEP+	SQM2.20	SQM2.20/fixed
BACE	36	0.71	0.61	0.00	0.23
CDK2	16	0.84	0.23	0.29	0.56
JNK1	21	0.85	0.72	0.16	0.19
MCL1	42	0.67	0.59	0.58	0.58
p38	34	0.77	0.42	0.25	0.36
PTP1B	23	0.79	0.64	0.55	0.55
thrombin	11	0.84	0.50	0.63	0.66
Tyk2	16	0.84	0.79	0.58	0.62
AVERAGE	25	0.79	0.56	0.38	0.47

- SQM2.20 limited by lack of reliable initial structures (severe clashes from docking/modeling)
- simple fixes improve correlations
- further improvements expected after complex refinement of structures

Outline

- 1. Computer-aided drug design
- 2. SQM Scoring
- 3. Experimental datasets (structures and affinities)
- 4. Extensions of SQM (docking, VGS)
- 5. Insulin Receptor Case Study

Integrating SQM Scoring with Docking

- automatic protocol for selecting best poses from docking
- SQM identifies the native pose reliably

Native Pose Identification

- diverse set of 17 protein-ligand systems
- SQM and 8 standard scoring functions
- false positive = a pose with better score than crystal (ideal: zero false positives)
- SQM has 4-12-times less FPs than the standard SFs

Chem. Commun. 2016, 52, 3312; J. Chem. Inf. Model. 2017, 57, 127; ACS Omega 2017, 2, 4022

Outline

- 1. Computer-aided drug design
- 2. SQM Scoring
- 3. Experimental datasets (structures and affinities)
- 4. Extensions of SQM (docking, VGS)
- 5. Insulin Receptor Case Study

Insulin Receptor (IR)

Insulin Analogs

Cryo-EM Conformation Continuum

- activation pathway
- 0-4 insulins bound
- resolution 3-9 Å

IOCB Prague

J. Nielsen, J. Brandt, T. Boesen, et al. J. Mol. Biol. 434 (2022) 167458

Local Sampling via Molecular Dynamics

	-	traj-1	traj-2	traj-3
Ile A2	Phe 714	90	50	62.9
Ile A2	His 710	90	90	55
Val A3	Asp 707	94	77.1	78.6
Tyr A19	Phe 714	86.7	92.5	63.3
Tvr A19	Val 715	70	100	70

45.3

62.7

60

Gly B8	Glu 706	100	100	83.3
Val B12	Leu 37	90	100	90
Val B12	Phe 64	55	55	36.7
Val B12	Arg 65	80	63.3	60
Val B12	Phe 714	60	70	37.5
Leu B15	Phe 714	93.3	84.3	91.7
Tyr B16	Phe 39	13.7	25.2	13.1

Pro 716

Tyr A19

- occupancies of H-bonds and nonpolar contacts throughout MD

Gly B23	Asn 15	100	93.3	96.7
Phe B24	Leu 37	86	88	2.5
Phe B24	Phe 714	58.6	76.3	66.7
Dhe B25	Pro 716	60	100	62.5
Dho D25	Arg 717	84.5	55.3	65
<u>File D25</u>	Pro 718	76.7	95	80
<u></u>	Asp 12	74.3	64.3	88
I Jyr B26	1.5012			

Virtual Glycine Scan of Insulin - Receptor

Eur. J. Org. Chem. 2018, 5203–5211

Miloš Halda, poster

SQM2.20: Universal Physics-based Quantum Mechanical Scoring

- **Reliable affinity predictions** ("DFT accuracy")
- **Reasonable computational cost** (20min/1CPU/compound)
- **Insightful details** of P-L binding (SQM geometries + energetics)
- Tested on diverse set of curated data
- publicly available **PL-REX**: 10 proteins, >150 ligands, structures, affinities
- Superior to quick approaches to ranking (MM, standard SFs and M-L)
- Comparable to FEP+

Slide number

Acknowledgements

- P. Hobza and his team members
- HPCg team
- IOCB tech
- GA CR

Thank you for your attention

QM/MM Setup

- Internal moving QM part
- Intermediate QM static part
- Outside fixed

Towards Virtual Screening

- Heat shock protein (HSP90); cancer and immunity
- 72 biologically active compounds + 4469 structurally similar compounds (DUD-E decoys)
- Enrichment factor (EF1) and ROC curves (AUC%), where random is (1, 50%) and ideal (63, 100%)

Eyrilmez et al.; ChemPhysChem 2019, 20, 2759