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Small-molecule drug discovery and development
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Adapted from Mortishire-Smith R., Openeye, 2012

The long way to a new drug…

Promising

Try to fix it!

Metabolism/Phar
macokinetics

Why not??

How on earth did 
we get here?

Spend lots of money

Clinical trials

Drug Not absorbed Not brain penetrant

Tastes horrible!

Kills rats on 
contact!

Excreted

Chewed up by liver
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Target known?

Wait until someone else 
has done it (for you)

Lots of money and commitment to 
basic research?

Found something

Further assays

Physiology, biochemistry, 
pharmacology: Work out 

new drug target

Found something

Got a
starting point? 

Substrate, literature, 
“me too”

Generative chem.

Found 
nothing

Make more compounds

Screen natural products,
synthetics, peptides, etc.

We lost! Shareholders are 
unhappy. Start from scratch!

Found nothing

Drat!

Add to screening 
set and try again

…indicate problems
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https://www.roche.com/research_and_development/who_we_are_how_we_work/research_process/value_chain/value_chain-1
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Target known?

Wait until someone else 
has done it (for you)

Lots of money and commitment to 
basic research?

Found something

Further assays

Physiology, biochemistry, 
pharmacology: Work out 

new drug target

Found something

Got a
starting point? 

Substrate, literature, 
“me too”

CombiChem

Found 
nothing

Make more compounds

Screen natural products,
synthetics, peptides, etc.

We lost! Shareholders are 
unhappy. Start from scratch!

Found nothing

Drat!

Add to screening 
set and try again

…indicate problems

423 Scientists working for

7,000,874 hours (15 Years)
spending

2,000,000,000 US$ =
1 NEW DRUG

27.01.2025



Developing a new drug is a 
multi-objective optimisation (MOO) problem
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Safety

Metabolic stability

Specificity

Absorption

Potency

Solubility

Left: Hann MM, MedChemComm 2011, 2, 349-355. doi: 10.1039/C1MD00017A
Right: Schneider et al., Nature Rev Drug Discov 2020, 19, 353–364.

• Drug discovery and development can be a chaotic journey on a 
multidimensional landscape that is not getting easier

• Pathway is typically sensitive to initial conditions and the fact that 
many different end points can result from the same starting point

• Different teams in different companies will end up with different drugs, 
by taking a slightly different perspective on data or ideas generated from the same starting points, 
which are then influenced by emerging observations as each program evolves



• Bioinformatics
◦ Analysis of genes and genomes, protein structure and function, and interactions of biomolecules
• Cheminformatics

◦ Design, creation, organization, management, retrieval, analysis, dissemination, visualization, and 
use of chemical information

◦ Main driver today: machine learning
• Molecular modeling

◦ Modeling the structure and properties of small molecules, biomacromolecules, and their 
interactions

◦ Term usually used in the context of forcefield-based methods
• Computational chemistry

◦ Modeling and prediction of physicochemical properties
◦ Term usually used in the context of quantum chemistry

Johannes Kirchmair

Computers in drug discovery
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• Definition by Greg Paris (1998):
“Chemoinformatics is a generic term that encompasses the design, creation, organization, 
management, retrieval, analysis, dissemination, visualization, and use of chemical information”

• Definition by Johann Gasteiger (2004):
◦ “Chemoinformatics is the application of informatics methods to solve chemical problems”
• Definition from Wikipedia:

“Cheminformatics … is the use of computer and informational techniques applied to a range of 
problems in the field of chemistry. These in silico techniques are used, for example, in 
pharmaceutical companies in the process of drug discovery. These methods can also be used in 
chemical and allied industries in various other forms.”

Johannes Kirchmair

Cheminformatics
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• Urgent need for more efficiency in drug discovery

• The relevant chemical space is of enormous dimensions. It cannot be systematically explored by 
experimental or theoretical methods

• Available data are too large for manual processing
• Need for means to store, organize, search, visualize and analyze data
• The physicochemical and biological properties of small molecules are often unknown:

◦ For only about 1 in 1000 known chemicals the 3D structure has been experimentally determined
◦ Even for many approved drugs the mode of action is unknown
◦ We are lucky enough if we know a single target of a compound, but we generally do not know 

the full bioactivity spectrum of compounds yet
• Structure-activity and structure-property relationships can be highly complex
• Computers can provide answers quickly, and at low cost

Johannes Kirchmair

Cheminformatics – Why?
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1 Ruddigkeit L  et al. J Chem Inf Model 2012, 52, 2864−2875. doi: 10.1021/ci300415d
2 Polishchuk PG, Madzhidov TI, Varnek A. J Comput-Aided Mol Des 2013, 27, 675–679.
3 Chen Y. et al., J Chem Inf Model 2017, 57, 2099−2111.

Figure: https://cen.acs.org/pharmaceuticals/drug-discovery/Hunting-drugs-chemical-space/100/i23 Page 14

Dimensions of the chemical space
Type # molecules
Particles in the (observable) universe 1082

Molecules < 1000 Da consisting of C, N, O, P, S, Hal, H Up to 10180

Drug-like molecules 
based on extrapolation on GDB-172

based on stitching together up to 30 carbon, nitrogen, oxygen, 
and sulfur atoms in different arrangements

1033

1063

Merck Accessible Inventory (MASSIV) 1020

Chemical universe database GDB-17: 
Listing all molecules up to 17 atoms1

166,400,000,000

Make-on-demand compounds in the public domain > 5,000,000,000
On-stock compounds 230,000,000
Known natural products 700,000
Purchasable natural products 25,0003



Computational approaches in drug discovery & development

Clinical phase I Clinical phase II Clinical phase III Registration Clinical phase IV

• Data acquisition and 
management

• Bioinformatics
• Protein structure and 

function prediction
• Binding pocket 

identification
• Druggability prediction
• …

• Data acquisition and 
management

• Physicochemical property 
profiling and filtering

• Virtual screening
• De novo design
• Generative chemistry
• …

• Multi-objective optimization
• Structure-based modeling
• Similarity-based approaches
• (Q)SAR and QS(P)R modeling
• Activity cliff exploration
• ADME prediction
• Toxicity and safety profiling
• …

• Physiologically-based 
pharmacokinetic (PBPK) modeling

• Dose-response modeling
• Adverse event prediction
• Clinical risk assessment
• …

Discovery phase (~3 years) Development phase (~2 years)
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Clinical trials (~7 years) Registration (~1-2 years)

Target selection Hit 
identification Hit to lead Lead 

optimization
Candidate 
selection

Pre-clinical 
studies
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• Study design and data management
• Clinical risk assessment
• Statistical software and AI tools for study design and assessment
• …



Johannes Kirchmair

Application scenarios for computational methods 
in early-stage drug discovery

• There is no in silico approach or method in existence that consistently outperforms all others
• Individual computational models commonly represent only a small fraction of the bioactive 

conformational space à Combination of methods and models is key!
• Machine learning has become a key technology in all four scenarios

Page 1627.01.2025

No information on target structures 
and ligands available

Information on target structures 
but not on ligands available:
STRUCTURE-BASED APPROACHES

• Selection of a diverse compound library
• Filtering for physicochemical properties, 

chemical reactivity, etc.

• Design of focused libraries
• Structure-based virtual screening 

(docking)
• De novo design at (putative) ligand 

binding site

Information on ligands but not on 
target structures available:
LIGAND-BASED APPROACHES

Information on target structures 
and ligands available

• Design of focused libraries
• Similarity- & shape-based screening
• Pharmacophore-based screening
• QSAR
• Virtual compound synthesis

• Any ligand- or structure-based 
approach and combinations thereof

X
X

X

X



Important data and information sources
• Johannes Kirchmair

Johannes Kirchmair27.01.2025



Data type Primary resource Key numbers

Primary literature The web >6 k per day

Protein X-ray structures Protein Data Bank (PDB) >230 k structures

Small molecule X-ray data Cambridge Crystallographic Database (CSD) 1.25 million compounds

Bioactivities PubChem and PubChem BioAssays
ChEMBL database

~300 million on 119 million compounds
>21 million on 2.5 million compounds, 
covering >16 k targets

Structure and physicochemical properties of 
small molecules

CAS SciFinder
PubChem

>100 million (+5 million per year)
~110 million

Make-on-demand compounds Enamine REAL, 
Wuxi Chemistry, ZINC (meta database)

Several billion

In-stock compounds ZINC >12 million

Natural products with known chemical 
structure

COCONUT up to 700k

Chemical reactions CAS SciFinder >130 million (+5 million per year)

27.01.2025 Johannes Kirchmair Page 18

Data for cheminformatics and structural bioinformatics

https://www.rcsb.org/
https://www.ccdc.cam.ac.uk/solutions/software/csd/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/docs/bioassays
https://www.ebi.ac.uk/chembl/
https://www.cas.org/solutions/cas-scifinder-discovery-platform/cas-scifinder
https://pubchem.ncbi.nlm.nih.gov/
https://enamine.net/compound-collections/real-compounds/real-database
https://chemistry.wuxiapptec.com/
https://zinc.docking.org/
https://zinc.docking.org/
https://coconut.naturalproducts.net/
https://www.cas.org/solutions/cas-scifinder-discovery-platform/cas-scifinder


• Rapid literature review
• Up-to-date information
• Cross-disciplinary exploration
• Question answering
• Data analysis assistance
• Source citation
• Hypothesis generation
• Research planning

27.01.2025 Johannes Kirchmair Page 19

Perplexity.ai, Abacus.ai and related tools...

• Access to most SOTA LLMs
• AI-driven code editor and generator



ChatGPT:

Here is an image of the 
molecular structure of 
aspirin with the atoms 
labeled according to 
their atomic numbers.

27.01.2025 ChatGPT Page 20

Let me know if you 
need further details or 

modifications!



• Johannes Kirchmair
Molecular representations

Johannes Kirchmair27.01.2025 Page 21



What is a molecule? 

Force Fields:

Set of harmonic springs
Electron Density

Isosurface 0.001 e-/bohr3

Quantum Chemistry:

C8H10N4O2

N

N N

N
O

O
«caffeine»

Graph representations:

Electron density Set of harmonic springs

Johannes Kirchmair Page 2227.01.2025



• Chemical structures can be stored as images of course, but this is of little value to computers. 
In fact, it is one of the biggest problems

• One solution: Representation of molecules as molecular graphs: Graph theory
◦ A graph represents the topology of a molecule: The way the nodes (or atoms) are connected
◦ A molecular graph consists of nodes (atoms) and edges (bonds), often with properties associated with 

them (e.g. atom type, bond type)
◦ Hydrogens often omitted

Molecular graphs

2,3,4,6- tetramethyloctane2,3,4,5-tetramethyloctane

O

OH

O

O

Leach & Gillet, An Introduction to Chemoinformatics, 2007, Springer. Page 2327.01.2025

automated optical chemical 
structure identification

https://decimer.ai/


Term Explanation

Degree of a node Number of edges meeting at the node

Leaf node A node with degree 1

Path Connected sequence of edges between two nodes

Cycle Path which returns to its starting node

Tree Graph without cycles

Subgraph Subset of nodes and edges of another graph

Graph terminology

!

"

#

"

""

#

!

!

!

#

#

#

degree
leaf node

cyclepath

Leach & Gillet, An Introduction to Chemoinformatics, 2007, Springer. Page 2427.01.2025



27.01.2025 Johannes Kirchmair Page 25

• Nearly 5000 chemical descriptors available 
today
• Tricky question: Which ones are applicable to 

my problem?

How can we describe the 
physicochemical properties of molecules?

sildenafil



https://chemintelligence.com/blog/machine-learning-descriptors-molecules Page 2627.01.2025

Types of descriptors



Descriptor class Derived from Definition Examples

0D-descriptors Atom list Represent intrinsic properties of a molecule that do not depend on its 
structure or connectivity 
→ Can be derived directly from the chemical formula

Molecular weight; number of atoms, 
bonds, or specific elements

1D-descriptors* Sequential data Descriptors calculated from substructural information or sequential 
representations. Topology information does not need to be complete

H-bond donors; number of specific 
substructures

2D-descriptors* Molecular 
graph

Single-valued descriptors calculated from molecular graph 
representations (topology). 
Sensitive to structural features of the molecule (size, shape and 
symmetry) 
→ most commonly used descriptors

Topological indices

3D-descriptors Molecular 
geometry

Descriptors calculated from 3D molecular structures (geometries) Molecular surface area and volume; 
dipole moment; 3D pharmacophores; 
steric and electrostatic fields

4D-descriptors Molecular 
geometry + 
spatio-temporal 
components

Addn. dimension that captures the dynamic behavior of molecules over 
time, considering multiple conformations and their transitions (often 
derived from molecular dynamics simulations)

Ensemble pharmacophore models; 
molecular dynamics simulations of 
binding modes; conformational 
ensemble-based properties

27.01.2025 Johannes Kirchmair Page 27

Types (“dimensionality”) of descriptors

* Note that there are some ambiguities in the definition of the classes of 1D and 2D descriptors in the scientific literature



• Any descriptors for which no information about the molecular structure and atom connectivity is 
required
• Can be derived directly from the chemical formula (e.g. C22H30N6O4S)
• Examples:

◦ Simple atom counts
- Number of nitrogen atoms
- Number of oxygen atoms

◦ Sum or average of atom properties
◦ Molecular weight
◦ Simple bond counts

H3C

N

N
CH3

HN

N
O

O

CH3

S

O

ON

NH+

H3C

Johannes Kirchmair

0D-descriptors: Constitutional descriptors, counts

No. of N: 6
No. of O: 4
MW: 474

Page 2827.01.2025



• Any descriptors calculated from substructural information
• Examples:

◦ Counts of functional groups and substructure fragments
◦ Number of hydrogen bond acceptors (HBA)
◦ Number of hydrogen bond donors (HBD)
◦ Number of sulfonamide groups
◦ Fragment-based descriptors
- logP descriptor

Johannes Kirchmair

1D-descriptors: Substructural information

No. of HBA: 6
No. of HBD: 1
No. of piperazines: 1
No. of sulfonamides: 1
No. of ethyl groups: 2

H3C

N

N
CH3

HN

N
O

O

CH3

S

O

ON

NH+

H3C
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ClogP: Use of structural fragments

isolating carbon: carbon not doubly or triply bonded to a heteroatom

• Fragment-based approach (hence 1D descriptor)
• Significant electronic interactions can be taken into account
• Not accounting for intramolecular hydrogen bonds
• Challenge: Estimating contributions of fragments not in the training set

Page 30Leach & Gillet, An Introduction to Chemoinformatics, 2007, Springer.27.01.2025



• Set of rings from which all others in the molecular graph can be constructed
• Comprises those rings containing the fewest atoms
• Used for quick structure search (e.g. downsize number of molecules in substructure searches)

SSSR (smallest set of smallest rings)

SSSR=(5,6,6,6)

SSSR=(5,5,5,6,11)

5
5

5

6 11

Page 31Leach & Gillet, An Introduction to Chemoinformatics, 2007, Springer.27.01.2025



• Helpful encoding of chemical information
• Vectors are usually filled with bits (0 or 1)
• Fingerprints are one of the preferred types of input in machine learning models

Johannes Kirchmair

Molecular fingerprints

N

N N

N
O

O
x1, x2, x3, x4,…                                                 … xn

molecular graph
molecular fingerprint

2D topological information information as vector of features.
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Fingerprint types Description Examples

Dictionary-based (also “structural”) keys Encode predefined structural features of 
molecules

MACCS (Molecular ACCess System) 
structural keys

Topological and path-based fingerprints Describe combinations of atom types and 
paths between atom types

AP (atom pair) fingerprints

Circular fingerprints Encode circular atom environments up to a 
certain bond radius from the central atom

ECFP (extended connectivity fingerprint), 
FCFP (functionality connectivity 
fingerprints), Morgan fingerprints

3D Pharmacophore fingerprints Encode the presence of pharmacophore 
features in molecules in 3D space

Riniker and Landrum, J Cheminf 2013, 5, 26.

Types of molecular fingerprints

Page 33

• Keyed representations (“Keys”): Each bit position corresponds to the presence or absence of a 
specific feature (or, albeit much less frequently used, a feature count)
• Hashed representations (“Fingerprints”): Features are mapped to overlapping bit segments 

(hence producing specific bit patterns without 1:1 bit-to-feature correspondence

27.01.2025



MACCS (Molecular ACCess System) 
structural keys
• One of the earliest developed and most 

established dictionary-based structural keys
• Consists of 166 predefined substructures defined 

as SMARTS
• Developed for substructure screening rather than 

similarity search. It does work for similarity 
search, however, not well.

http://www.dalkescientific.com/writings/NBN/fingerprints.html

Dictionary-based structural keys

SS

O Cl

Cl

1 1 0 0Bitstring:

Is th
ere a chlorine?

Is th
ere an S-S bond?

Is th
ere a ring size

 of 6?

Is th
ere an oxygen in a ring?

Page 34

A B

1 1 0 1 0 1 0
1 1 0 1 0 0 0

O

O
O SOH NH2

A
B

O

O

H3C OH

O

OH OH

O

Further example:

27.01.2025



• Boolean array encoding the presence (TRUE)/absence (FALSE) of predefined structural fragments 
of a molecule as a bit string
• Boolean arrays can be compared quickly and a similarity score determined

◦ Enables fast substructure search, which normally is computationally expensive (NP-complete 
problem)

◦ Enables fast ranking of molecules according to their similarity to query compound(s)
• Originally designed for high-speed search/filtering of large databases, not to quantify chemical 

similarity or describe chemistry
• Important limitation: Pre-definition of keys in a dictionary leads to a lack lack of generality à

applicability depends on the specific dataset

http://www.dalkescientific.com/writings/NBN/fingerprints.html

Dictionary-based structural keys
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• Example: Atom pair fingerprints

In both examples:
• An exhaustive list of patterns is produced, 

up to the path length limit
• Number of possible patterns is huge à

assignment of a particular bit for each 
pattern not feasible à use of a “hash 
function” à “hashed fingerprint”

http://www.daylight.com/dayhtml/doc/theory/theory.finger.html
Samuel E. Adams, Ph.D. Thesis, Univ. of Cambridge, 2010

Topological and path-based fingerprints

OH

H2N

0-bond paths: C O N

1-bond paths: OC C=C CN

2-bond paths: OC=C C=CN

3-bond paths: OC=CN

Page 36

• Example: Circular fingerprints

27.01.2025
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• Hashed fingerprints are a result of the evolution of structural keys, from patterns defined by a 
dictionary to tailored patterns generated from the molecule itself à hashed fingerprints are 
independent of a dictionary and –in principle– applicable to all molecular structures
• Hashing algorithm:
• Each pattern (key) serves as a seed to a pseudo-random number generator (hashing algorithm), 

the output of which is a set of bits (typically 4 or 5 bits per pattern)
• The set of bits thus produced is added (with a logical OR) to the fingerprint

http://www.daylight.com/dayhtml/doc/theory/theory.finger.html

Hashed fingerprints I
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• Advantages:
• Generally applicable: One fingerprint serves all databases and all types of queries
• More effective use is made of the bitmap: Structural keys are usually very "sparse" (mostly zeros) 

since a typical molecule has very few of the patterns that the structural key's bits represent. 
Hashed fingerprints can be relatively "dense" (20-40% of bits set to “1”) without losing 
specificity.

• Disadvantages:
• (Low) risk of overlapping bits (which means loss of information):
• Each pattern generates its defined set of bits à as long as at least one of those bits is unique (not 

shared with any other pattern present in the molecule), we can tell if the pattern is present or not
• Limited interpretability:
• Fingerprint cannot be converted back into structural features (since one bit doesn’t encode a specific 

feature)
• If a bit of a fingerprint indicates a pattern is missing then it certainly is missing, but if a bit of a 

fingerprint indicates that a pattern is present it can do this only with some probability 
(since this bit could also encode other features)

Hashed fingerprints II

http://www.daylight.com/dayhtml/doc/theory/theory.finger.html Page 3827.01.2025



• Encode presence and absence of features but not chemistry itself
• Generally do not encode stereochemistry
• Generally do not encode the number of instances of a specific feature present in a molecule 
à “holograms” encode the number of instances as an integer rather than a bit vector
• Connectivity of the individual features is lost:

Bit strings of molecules A-B-C and C-A-B are identical

Johannes Kirchmair

General limitations of molecular fingerprints
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• Single-valued descriptors calculated from the H-depleted molecular graph representation
• Encode adjacency and connectivity
• Sensitive to structural features such as size, shape, symmetry and degree of branching
• Two types:

- Topostructural descriptors
- Encode 2D graph information only: Size, branching, overall shape

- Topochemical descriptors
- Encode also specific chemical properties of atoms, e.g mass or hybridisation states

Johannes Kirchmair

2D-descriptors
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Wiener Index (1947)
• Oldest topological index related to the branching of a molecule
• Closely correlated with the boiling points of alkane molecules
• The path number w is defined as the sum of the distances D 

(counted as number of bonds) between any two carbon atoms 
in the molecule, i and j, in terms of heavy atom bonds

• Wiener Index decreases with a higher degree of branching

Topostructural indices

w = 1
2

Dij
j=1

N

∑
i=1

N

∑

3-ethylethane: w=72, resulting from the 
sum of distances between atom pairs:

1-2(1), 1-3(2), 1-4(3), 1-5(4), 1-6(5), 1-7(3), 1-8(4), 
2-3(1), 2-4(2), 2-5(3), 2-6(4), 2-7(2), 2-8(3), 

3-4(1), 3-5(2), 3-6(3), 3-7(1), 3-8(2), 
4-5(1), 4-6(2), 4-7(2), 4-8(3), 

5-6(1), 5-7(3), 5-8(4), 
6-7(4), 6-8(5), 

7-8(1) 

1+2+3+4+5+3+4  +1+2+3+4+2+3  +1+2+3+1+2  +1+2+2+3  +1+3+4 +4+5  +1 = 72

Substance Wiener-Index 

n-hexane 35 

2-methylpentane 32 

3-methylpentane 31 

2,3-dimethylbutane 29 

Page 41Leach & Gillet, An Introduction to Chemoinformatics, 2007, Springer.27.01.2025



• Use Cartesian coordinates of atoms to derive descriptions of molecules
• Advantages:

◦ Rich information content
• Disadvantages:

◦ Conformation needs to be known or at least determinable
◦ Depend (to very different extents) on ligand conformation, which itself depends on the ligand 

environment (vacuum, solution, protein, etc.) 
- This is why they often do not perform substantially better than less complex descriptors

◦ Because the relevant ligand conformation is often unknown, conformer ensembles are used to 
represent the relevant conformational space. However, this increases complexity but not 
necessarily accuracy

◦ 3D-based approaches for virtual screening tend to obtain enrichment rates that are comparable 
to those of 2D approaches, but scaffold diversity among the correctly identified active molecules 
is generally higher

3D Descriptors: Geometrical representation of molecules

Johannes Kirchmair Page 4227.01.2025



• Force field: Functional form and parameter sets used to calculate the potential energy of a system of atoms
• Molecular mechanics is an empirical approach:

◦ There is no reason why a specific functional form is necessarily better than any other
◦ Parameters of the energy functions can be derived from experimental work and quantum mechanical calculations

• Transferability: It is assumed that the parameters derived from small sample systems can be applied to much larger molecules and 
molecular systems

• Pair-wise additive approximation: Interaction energy between one atom and the rest of the system is calculated as a sum of pair-wise 
(on atom to one atom) interactions, or as if the pair of atoms do not see the other atoms in the system

• Fixed set of atom types: The number of atom types is kept at a minimum by grouping, which can lead to errors
• Force fields ignore the electronic motions in the system and calculate the energy solely as a function of the atom positions
• Large number of force fields exists. Many specialized force fields: Organic molecules, biomacromolecules, sugars, etc.
• "All-atom" force fields: provide parameters for every type of atom in a system

www.ch.embnet.org/MD_tutorial/pages/MD.Part2.html 
Leach, A. In “Comprehensive Medicinal Chemistry II”, Elsevier, 2006.

Empirical force fields

Page 43

bonded non-bonded

We shall examine each of these terms in more detail below, but there are two important features about any force
field method that need to be emphasized. The first of these is that molecular mechanics is an empirical approach; there
is no inherent reason why any one functional form is necessarily better than any other. The method incorporates many
empirical parameters (e.g., ki, Vn, eij, qi in the above equation), which must be derived from some source; typically from
a combination of experimental and theoretical data. The second key assumption is that of transferability. This enables a
set of parameters developed and tested using a relatively small number of test systems to be applied to a much wider
range of molecules. In particular, parameters developed from data on small molecules can be used to study much larger
molecules and molecular systems such as protein–drug complexes. However, the applicability of different force fields
can vary quite widely. Some force fields are designed for a rather limited range of molecular types (e.g., peptides and

proteins) whereas others are applicable to compounds from the entire periodic table. Drug design applications typically
require force fields that can deal with a wide range of organic molecules, consistent with the wide variation in molecular
structures encountered in medicinal chemistry.

One concept common to most force fields is that of ‘atom type.’ Quantum mechanical calculations only require the
atomic numbers of the nuclei in the system to be specified together with information on the overall charge on the
system and the spin multiplicity. In force field applications the atom type usually includes information not only about
the nature of the atom (i.e., the atomic number) but also about its hybridization state, and sometimes about its local
environment. Thus, most force fields distinguish between sp3, sp2, and sp hybridized carbon atoms with their
tetrahedral, trigonal, and linear geometries, respectively. Some force fields make yet further distinctions, for example,
by characterizing the neighboring environment (e.g., aromatic carbon atoms in 5- and 6-membered rings may be
assigned different atom types).

In the next sections we will examine in some detail the terms encountered in force fields commonly used in drug
design. First we consider those intramolecular terms involving groups of atoms that are bonded together and then we
consider the nonbonded terms.

4.05.2.1 Bond Stretching and Compressing

The energy required to compress or stretch a bond generally varies in the manner shown in Figure 2. Of the various
functional forms that have been suggested to model this curve that due to Morse is perhaps the best-known:

E ¼ De 1" exp½"aðl " l0Þ&f g2 ½2&

De is the depth of the potential energy minimum and a is a constant related to the frequency of the bond vibration
and the masses of the atoms. The Morse potential is not usually used in molecular mechanics. In part this is because it

requires specification of three parameters for each bond. It is also relatively time consuming to compute. More
importantly, in most drug discovery applications we deal with molecular geometries in which the bond lengths (and also
the bond angles) stay close to their equilibrium values (i.e., near the bottom of the well in Figure 2). Processes
involving the breaking of bonds are invariably tackled using quantum mechanics. In the equilibrium region the energy
required to deform a bond is well approximated by a much simpler quadratic function (also illustrated in Figure 2).
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We shall examine each of these terms in more detail below, but there are two important features about any force
field method that need to be emphasized. The first of these is that molecular mechanics is an empirical approach; there
is no inherent reason why any one functional form is necessarily better than any other. The method incorporates many
empirical parameters (e.g., ki, Vn, eij, qi in the above equation), which must be derived from some source; typically from
a combination of experimental and theoretical data. The second key assumption is that of transferability. This enables a
set of parameters developed and tested using a relatively small number of test systems to be applied to a much wider
range of molecules. In particular, parameters developed from data on small molecules can be used to study much larger
molecules and molecular systems such as protein–drug complexes. However, the applicability of different force fields
can vary quite widely. Some force fields are designed for a rather limited range of molecular types (e.g., peptides and

proteins) whereas others are applicable to compounds from the entire periodic table. Drug design applications typically
require force fields that can deal with a wide range of organic molecules, consistent with the wide variation in molecular
structures encountered in medicinal chemistry.

One concept common to most force fields is that of ‘atom type.’ Quantum mechanical calculations only require the
atomic numbers of the nuclei in the system to be specified together with information on the overall charge on the
system and the spin multiplicity. In force field applications the atom type usually includes information not only about
the nature of the atom (i.e., the atomic number) but also about its hybridization state, and sometimes about its local
environment. Thus, most force fields distinguish between sp3, sp2, and sp hybridized carbon atoms with their
tetrahedral, trigonal, and linear geometries, respectively. Some force fields make yet further distinctions, for example,
by characterizing the neighboring environment (e.g., aromatic carbon atoms in 5- and 6-membered rings may be
assigned different atom types).

In the next sections we will examine in some detail the terms encountered in force fields commonly used in drug
design. First we consider those intramolecular terms involving groups of atoms that are bonded together and then we
consider the nonbonded terms.

4.05.2.1 Bond Stretching and Compressing

The energy required to compress or stretch a bond generally varies in the manner shown in Figure 2. Of the various
functional forms that have been suggested to model this curve that due to Morse is perhaps the best-known:

E ¼ De 1" exp½"aðl " l0Þ&f g2 ½2&

De is the depth of the potential energy minimum and a is a constant related to the frequency of the bond vibration
and the masses of the atoms. The Morse potential is not usually used in molecular mechanics. In part this is because it

requires specification of three parameters for each bond. It is also relatively time consuming to compute. More
importantly, in most drug discovery applications we deal with molecular geometries in which the bond lengths (and also
the bond angles) stay close to their equilibrium values (i.e., near the bottom of the well in Figure 2). Processes
involving the breaking of bonds are invariably tackled using quantum mechanics. In the equilibrium region the energy
required to deform a bond is well approximated by a much simpler quadratic function (also illustrated in Figure 2).
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• Van der Waals surface
◦ Simplest surface that represents the van der Waals radii of all atoms
◦ Each atom represented by a sphere
◦ The spheres of all atoms are fused
◦ The total volume is the van der Waals volume, and the envelope 

defines the van der Waals surface
◦ Quickly calculated
◦ Limitation: Small cavities are artifacts and not of interest à

• Connolly surface (also “molecular surface” or 
“solvent-excluded surface”)
◦ Generated by simulating a sphere rolling over the van der Waals 

Surface
◦ The sphere represents the solvent
◦ Radius is typically 1.4 Å, which is the effective radius of water
◦ Connolly surface has two regions:
- Convex contact surface (segment of the vdW surface)
- Concave surface (where the sphere touches two or more atoms)

• Solvent-accessible surface (SAS)
◦ Defines the surface accessible to the solvent à find space that can 

accommodate water molecules
◦ Path of the center of the probe that generates the Connolly surface
◦ SASA is larger than a molecular surface

• Beware! Hydrogens need to be taken into account!

Surfaces

van der Waals surface
Connolly surface

solvent-accessible surface (SAS)

H2O

atom Batom A

Johannes Kirchmair Page 4427.01.2025



Johannes Kirchmair

Physicochemical properties can be projected onto surfaces

van der Waals surface

Solvent-accessible surface (SAS) Connolly or molecular surface

Page 4527.01.2025



Klebe G. Drug Design, Springer 2013.

Conformational flexibility and its representation by 
conformer ensemble generators

The relevant conformational space is 
attempted to be represented by a 
small ensemble of (14) conformers

Experimentally observed 
conformations for AMP

Page 4627.01.2025
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3D Pharmacophore keys I

• Pharmacophore keys: characterised by the types of pharmacophore features involved and the distances (binned) 
between them

• Most common: Three or four-point pharmacophore keys
• Each bit in the pharmacophore key bit string thus represents one possible three/four-point pharmacophore.
• Pharmacophore keys are generated for each individual conformation. When comparing two molecules, the 

fingerprints of the individual conformations are compared and the best-matching fingerprints are used to quantify 
similarity 

Leach & Gillet, An Introduction to Chemoinformatics, 2007, Springer.27.01.2025



Johannes Kirchmair

3D Pharmacophore keys II

…0001010001…conformer A:
…0000011001…conformer B:

3D pharmacophore keys are 
conformation-dependent: 

Example of an HBD-HBA-Aro
pharmacophore:

Page 4827.01.2025



• Definition:
◦ Molecular representations learned directly from 

data using algorithms like neural networks (e.g., 
GNNs, transformers)

• Aim:
◦ Automated extraction of the features most 

relevant to a specific task without relying on 
pre-defined descriptor

• Advantages:
◦ Task-specific: automatically capture features most 

relevant to the task (e.g., solubility prediction, 
docking)

◦ Higher expressiveness: learn patterns beyond 
traditional descriptors

◦ Scalability: handle large datasets and integrate 
multimodal information (e.g., combining 2D and 
3D features)

• Examples: 
◦ Sequence-based representations: derived from 

models like transformers trained on SMILES 
strings

◦ Graph-based representations: derived from 
GNNs, where molecules are treated as graphs 
(atoms = nodes, bonds = edges)

◦ 3D geometric representations: derived from 3D 
molecular structures using equivariant neural 
networks or force-field simulations

27.01.2025 Johannes Kirchmair Page 49

Learned molecular representations



Data formats
• Johannes Kirchmair

Johannes Kirchmair27.01.2025



The connection tables: MOL and SD file format

stereo flags:
0 not stereo
1 clockwise
2 counter-clockwise
3 either or unmarked 

stereo center

Hydrogens are often 
suppressed as they can 
be inferred from the 
element type, 
hybridisation and 
ionization state

at
om

 b
lo

ck
bo

nd
 b

lo
ck

pr
op

er
tie

s

>  <property 1>
property value 1

>  <property 2>
property value 2

molecule name

27.01.2025 http://www.atdbio.com/content/16/Nucleic-acid-drug-interactions#Intercalators Page 51



CH3

H3C

• Single line notation - fairly easy to interpret
• “Walk” through the chemical structure. Each atom is visited only once
• Branch points: Indicated using brackets
• Branches can be nested to any level necessary
• Hydrogens usually omitted
• Aromatic atoms: small letters
• Double bonds: =
• Triple bonds: #
• R/S: In this case, hydrogens are included
• cis/trans: pair of “/X=X/” or “/X=X\”
• “.”: Separator of components, 

e.g. salt components

SMILES - Simplified Molecular Input Line Entry Specification 

succinic acid:
OC(=O)CCC(=O)O 

CH3H3C
cis-butene
C/C=C\C

trans-butene
C/C=C/C

HO

O

O

OH

N

H2N

O

HO

N[C@H](C)C(=O)O 

C\C=C1\CCCC(F)C1

F

Leach & Gillet, An Introduction to Chemoinformatics, 2007, Springer.
http://www.daylight.com/dayhtml/doc/theory/theory.smiles.html Page 5227.01.2025



SMILES - Simplified Molecular Input Line Entry Specification 

NH2

H
N

HO

serotonin:
NCCc1cnc2ccc(O)cc12 

c1

c2

N

N

NH2

H2N

O

O

O

trimethoprim:
COc1cc(Cc2cnc(N)nc2N)cc(OC)c1OC 

c1c2

O

O

progesterone:
CC(=O)C1CCC2C3CCC4=CC(=O)CCC4(C)C3CCC12C 

C1

C2C3

C4

Page 53Leach & Gillet, An Introduction to Chemoinformatics, 2007, Springer.27.01.2025



The Morgan algorithm (1/2)

n… number of different connectivity values
1/27/25 Page 54Leach & Gillet, An Introduction to Chemoinformatics, 2007, Springer.
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5 1
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Priorities

CC(=O)Oc1ccccc1C(O)=O
1

3

1 9
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8
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6
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7

2 2



Morgan algorithm:
• Basic idea: Iterative calculation of “connectivity values” to enable differentiation of the atoms
• Initially, each atom is assigned a connectivity value equal to the number of connected atoms
• In the second and subsequent iterations a new connectivity value is calculated as the sum of the 

connectivity values of the neighbors
• The procedure continues until the number of different connectivity values reaches a maximum
• Most nodes have now unique connectivity values

• The atom with the lowest connectivity value (19 in this example) is then chosen as the first atom 
to assign priorities
• If a “tie” occurs (e.g. the two oxygens of the carboxyl group in the above example), then additional 

properties are considered such as atomic number and bond order
• Starting from the lowest priority value, we then walk through the molecule, generating the 

canonical SMILES notation

The Morgan algorithm (2/2)

Page 55Leach & Gillet, An Introduction to Chemoinformatics, 2007, Springer.27.01.2025



• Unique chemical identifier developed by IUPAC that includes the full information on molecular 
structures
• InChI is designed for machine-readability; still human-readable but requires much more practice 

than SMILES representation
• Key advantages: 

◦ Layered structure allows the representation of structures at the desired level of detail
◦ Allows the description of mobile hydrogens à tautomer-invariant description, meaning that 

most tautomers can be covered with a single InChI

https://en.wikipedia.org/wiki/International_Chemical_Identifier
Heller et al., J Cheminf 2015, 7:23.

InChI (IUPAC International Chemical Identifier) I

InChI=1S/C3H8/c1-3-2/h3H2,1-2H3

2

3

1

“1” indicating InChI version number; “S” for standard InChI

Page 5627.01.2025



• Main layer:
◦ Chemical formula
◦ Atom connections: atom 7 connected to atom 1, atom 1 to atom 2, atom 2 to atoms 8 and 5…
• Hydrogen layer:

◦ Atoms 2, 5 and 7 to 10 have a single H attached
◦ Atom 1 has two H atoms attached
• Stereochemistry layer:

◦ t indicates tetrahedral stereochemistry of atoms 2 and 5
◦ m indicates that the selected molecule has exactly this configuration
◦ s indicates type of stereochemistry information

Johannes Kirchmair

InChI: Example ascorbic acid

hydrogen atoms

HO

HO

HO OH

OO
H

H

7
1

2
8

5
3

9 10
4

6
11

12

InChI=1/C6H8O6/c7-1-2(8)5-3(9)4(10)6(11)12-5/h2,5,7-10H,1H2/t2-,5+/m0/s1
chemical formula atom connections stereochemistry layer
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• “Regex for molecules”, built on the idea of SMILES representations
• Allows the use of logical expressions

• Example: 
Pattern describing the reactive group of 
sulfonyl and sulfuryl halogenides

SMARTS

https://smarts.plus/ Page 5827.01.2025

S(=O)(=O)[F,Cl,Br,I]



• “Regex for molecules”, built on the idea of SMILES representations
• Allows the use of logical expressions

SMARTS

Symbol Description
* Any atom
$ Used to represent recursive SMARTS expressions
a Aromatic atom
A Aliphatic atom

D<n> Atom with <n> explicit bonds 
(commonly: bonds to non-H atoms)

X<n> Atom with a total of <n> bonds
v<n> Atom with bond order <n> 
H<n> Atom with <n> neighboring H atoms
h<n> Atom with <n> neighboring implicit H atoms
R<n> In <n> rings of a SSSR (Smallest Set of Smallest Rings)
r<n> In the smallest ring of a SSSR with atoms <n> 
-<n> Negative formal charge <n> 
+<n> Positive formal charge <n> 
#<n> Atom with atomic number <n> 
@ Atom with local chirality counterclockwise 
@@ Atom with local chirality clockwise
<n> Atom with atomic mass <n> 

Johannes Kirchmair Page 5927.01.2025

[C;!D4;!D1;!R;$(C(=O));$(C([O;D2])[#6,#7;!D1]!=
[!D1])];!@[O;D2;$(O(C(=O))[#6;!D1][#6;!D1]);
!$(OCO);!$(O[P,S])]

“An acyclic, non-aromatic carbon atom of an ester, adjacent 
to a non-terminal carbon or nitrogen without a double bond 
to a non-terminal atom, which is connected via an acyclic 
single bond to a 2-coordinate oxygen atom of the ester, 
adjacent to two other non-terminal carbon atoms, but not 
part of a carboxylate, or adjacent to sulfur or phosphorus.”



Molecular similarity – molecular diversity
• Johannes Kirchmair

Johannes Kirchmair27.01.2025



0.630.62

0.58 0.51

0.42

0.56

0.420.43

query

• Widely applied concept in cheminformatics :
◦ Bioactivity prediction (QSAR modeling)
◦ ADME prediction
◦ Toxicity prediction:

read-across, QSTR modeling
◦ Virtual screening
◦ Hit expansion 
◦ Target prediction
◦ …

Johannes Kirchmair

The molecular similarity principle:
Compounds which are structurally similar are likely to have 

similar physicochemical and biological properties

Beware! Definition 
of similarity is 
arbitrary and mostly 
used as a global 
property!

Page 6127.01.2025



• [0 – 1], where Tanimoto = 1 indicates identical 
molecules
• Tanimoto coefficient is the ratio between the 

number of common bits and the number of 
bits set (i.e. nonzero) in either sample
• Tanimoto coefficient is size-dependent:

◦ Molecule with few features all of which are 
shared with a molecule with many features is 
not evaluated similar

◦ Larger molecules tend to have higher 
Tanimoto coefficient

• Tanimoto coefficient is descriptor-dependent: 
A Tanimoto of 0.4 may mean two molecules 
are completely unrelated by MACCS keys or 
similar by circular fingerprints

Similarity coefficients: Tanimoto coefficient

Tanimoto = c
a+b− c

=
3

4+3−3
= 0.75

A
B

1 1 0 1 0 1 0
1 1 0 1 0 0 0

O

O
O SOH NH2

A B

O

O

H3C OH

O

OH OH

O

a… Number of bits on in (A)
b... Number of bits on in (B)
c... Number of bits on in (A) AND (B)

Leach & Gillet, An Introduction to Chemoinformatics, 2007, Springer.
Jain, A. In “Chemoinformatics for Drug Discovery”, Wiley 2014.
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Mathai N. and Kirchmair J., Int J Mol Sci 2020, 21, 3585. Page 63

Levels of molecular similarity (visualization)

27.01.2025



Definition of similarity is arbitrary and 
mostly used as a global property

HO O H2N O
N

H3C CH3 H2C CH3
N

O O- H2N NH2 HN NH2O O

Volumes and 
surface 

potentials

Hydrophobic 
and polar 

regions

Hydrogen 
bond acceptor 

potentials

Hugo Kubinyi’s lecture on "Chemical similarity and biological activities”. Page 6427.01.2025



Structurally related drugs - distinct pharmacological effects

Klebe G. Drug Design, Springer 2013. Page 65

Promethazine Chlorpromazine Imipramine
H1 antagonist D2-antagonist 5-HT & many others

1st-generation antihistamine neuroleptic antidepressant

27.01.2025



http://www.wallpaperhere.com/California_Poppies_and_Rolling_Hills_24369/download_1600x1200
http://www.visitsouthernutah.com/Bryce-Canyon-National-Park

Activity landscapes can be rugged!

discontinuous SARcontinuous SAR

• Activity cliffs: Small structural changes can lead to substantial changes in 
bioactivity à non-linearity of structure-activity relationships
• Molecules may be binding at different locations within the binding site

Page 6627.01.2025



Discontinuous SARs: Activity cliffs

HN

N

N

N

O

O

OH

OH

HO

N

N

N

NH2

O

OH

OH

HO

N

N

N

N

O

OH

OH

HO

MACCS keys-
based TC = 0.92 MACCS keys-

based TC = 0.90

MACCS keys-
based TC = 0.95

IC50 = 0.0002 nM

IC50 = 180 nM IC50 = 9000 nM

Example: Adenosine deaminase inhibitors
TC… Tanimoto coefficient

dihydropurinone

Varnek, A. „Chemoinformatics Approaches to Virtual Screening“, RSC 2008. Page 6727.01.2025



Jain, A. In “Chemoinformatics for Drug Discovery”, (Ed. Bajorath) Wiley 2014.

Non-additivity in SAR
Example of an exclusive-OR problem: Four muscarinic antagonists, all based on the 

quinuclidinene-furan scaffold, exhibit a pattern of potency variation that is highly non-additive
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The combination of activity variations in this example can be seen to be isomor-
phic to the exclusive-or problem in computer science, where (1,0) and (0,1) map to 
TRUE and (0,0) and (1,1) map to FALSE. The significance of this problem in 
machine learning was pointed out in the late 1960s. By the early 1960s, linear 
learning models called perceptrons had been developed as a means to develop 
machine intelligence [5]. In 1969, Marvin Minsky and Seymour Papert [6] pub-
lished a monograph in which they observed that the perceptron approach could not 
learn the logical function of exclusive-or. This observation was the principle factor 
in the decline of research on network learning models such as perceptrons. It took 
two decades before nonlinear modeling methods with corresponding parameter 
estimation regimes were shown to be able to address the XOR problem [7]. Such 
methods include neural networks, support-vector machines, random-forest 
learning, and many modern statistical machine learning algorithms (these issues 
are discussed in more detail in two papers [4, 8]). In retrospect, recognition of 
the  simple fact that an entire class of models could not capture a very simple 
phenomenon was very good for the field of machine learning. It stimulated effort 
to develop new and better methods, many of which have been extremely 
successful.

As with the XOR problem for machine learning, we believe that it is vital for 
molecular modeling, as a field, to address the central dogma of physical reality in 
how most drug molecules exert biological effects through modulation of protein 
activity. Protein-ligand-binding interactions have four properties that are crucial to 
model in any physically sensible approach to prediction of likely targets or of binding 
affinity. First, the interactions are dependent on the conformation and relative align-
ment of both the protein and ligand. Second, that modifications on a ligand scaffold 
often produce changes in scaffold pose and may also produce changes in binding 
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The XOR problem Nonadditivity in SAR 

FIGURE 2.3 Four muscarinic antagonists, all on a quinuclidinene-furan scaffold, exhibit a 
pattern of potency variation that is both highly nonadditive and is isomorphic to the classic 
XOR problem. For color details, please see color plate section.

too big to fit
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• Substantial changes in activity are most valuable 
information, in particular if they can be attributed 
to a specific fragment
• MMPs are pairs of compounds that differ only at a 

single localized site and are distinguished by a 
defined substituent or molecular fragment
• Often trends can be derived from analysing a series 

of MMPs based on the same transformation
• MMPs are straightforward to understand from a 

medicinal chemistry perspective
• Results are context-specific and the context 

(fragment size) can be chosen arbitrarily

Griffin E. et al,. J Med Chem 2011, 54, 7739-7750. 
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Applications of MMPs: 
Example bioisosteric replacement

assigned to two target families and, in a few instances, also to

three or four. The extreme case has been a rather generic

replacement of a meta- versus para-substituted phenyl ring,

which was bioisosteric for ligands of six target families.

Target family directed bioisosteric replacement

After removal of these 16 transformations, a total of 67 trans-

formations remained that met our single target family constraint

and hence qualified as target family directed bioisosteres. These

67 bioisosteric replacements were directed against 12 target

families. Table 2 reports the distribution of bioisosteric replace-

ments over these families. A total of 22 replacements were found

in ligands active against the nucleotide-like ligand receptor

family, which represented the largest number, followed by the

short peptide receptor with 19 bioisosteric replacements, and the

monoamine receptor, tyrosine kinase, and peptidase M10A

families with five bioisosteric replacements, respectively. Table 2

also shows that there was no correlation between the number of

targets per family and the number of detected replacements.

While 5 bioisosteric replacements were found for inhibitors of

tyrosine kinases, only a single bioisostere was detected for

inhibitors of AGC serine/threonine kinases. In three more cases

including the lipid-like ligand receptor, the SNF symporter (TC

2.A.22) and the peptidase C1 families, only a single qualifying

replacement was identified. In Fig. 4a, all 67 target family

directed bioisosteric replacements are shown. As can be seen,

chemically different and differently sized replacements were

observed for individual protein families.

Compound data mining efforts are generally affected by ‘‘data

sparseness’’ (i.e., available compounds have not been tested on

all families). Due to data sparseness, one cannot conclude with

certainty that replacements identified for a single target family

could not in principle act as bioisosteres on another target family.

It is important to note that one can only extract information that

currently available compound data provide. Therefore, we

deliberately use the term ‘‘target family directed’’ (rather than

‘‘target family specific’’) bioisosteres. However, in many

instances, replacements that might, at first glance, look rather

generic are indeed target-family directed because of the potency

differences associated with them in different families. As an

example, we consider the methyl to trifluoromethyl replacement

that was found to be directed against the nucleotide-like ligand

receptor family. This substitution was also frequently observed

for monoamine receptors, tyrosine protein kinases, short peptide

receptors, lipid like ligand receptors, and SNF symporters.

However, for these families, the replacement often induced large

potency differences. For these families, potency changes of more

than one order of magnitude were observed with frequencies of

21.1, 19.2, 16.2, 13.3, and 9.7%, respectively. Hence, in these

cases, the methyl to trifluoromethyl substitution did not qualify

as a bioisostere.

Chemical interpretation

A strength of the MMP-based approach to bioisostere analysis is

that it requires no pre-conceived chemical notion of groups that

Fig. 3 Bioisosteres directed at multiple target families. The 16 bioisosteric replacements that were identified for multiple target families are shown and

annotated with their family assignments.

Table 2 Distribution of target family directed bioisosteresa

TF Abbr. #Bioisosteres #Targets

Nucleotide-like ligand receptor NLR 22 5
Short peptide receptor SPR 19 35
Peptidase M10A M10A 5 9
Tyrosine-protein kinase TK 5 30
Monoamine receptor MAR 5 34
a-Carbonic anhydrase CA 3 9
Peptidase S1 S1 2 17
Nuclear hormone receptor NHR 2 18
SNF symporter (TC 2.A.22) SNF 1 5
AGC Ser/Thr kinase AGC 1 14
Peptidase C1 C1 1 6
Lipid-like ligand receptor LLR 1 20

a Target families for which family directed bioisosteres were identified are
listed in the column ‘‘TF’’ and are abbreviated (‘‘Abbr.’’). For each family
the number of directed bioisosteres (‘‘#Bioisosteres’’) and the number of
targets in the family (#Targets) are reported.

604 | Med. Chem. Commun., 2011, 2, 601–606 This journal is ª The Royal Society of Chemistry 2011
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View Article Online

Bioisosteres identified through the analysis of 
a large number of target protein families

Wassermann A.M. and Bajorath J., Med Chem Commun 2011, 2, 601-606.
Wassermann A.M., PhD thesis, University of Bonn, 2012. Page 7027.01.2025

Representative subset of structural transformations 
that frequently introduce activity cliffs

• Bioisosteres are groups or 
molecules which have chemical 
and physical similarities producing 
broadly similar biological effects
• Why search for bioisosteres?

• Scaffold-hopping
• Side-chain enumeration
• Patent protection by hit expansion
• Patent breaking
• Property manipulation



http://www.eyesopen.com/brood

BROOD: fragment replacement

• BROOD generates analogs of the lead by replacing selected fragments in the molecule with fragments that 
have similar shape and electrostatics, yet with selectively modified molecular properties

Comparison of an ester fragment and an oxazole fragment showing the electrostatic
isopotential contour surfaces. The electrostatic Tanimoto coefficient between the two fragments is 0.54.
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• Representation of a molecules’ individual atoms by 
spherical Gaussians:
• Shape represented by soft (fuzzy) Gaussians
• Chemical features (e.g. H-bond donor) represented by 

hard Gaussians
• Molecules aligned by rigid body optimization, 

maximizing the overlap of volumes between them:
• Determination of the center of mass, then rotation 

along the principal moments of inertia
• Chemical features used to “snap in” alignment (à

accurate superposition of hydrogen bonds)
• Hydrogens are ignored
• Can typically analyze 1000 conformers per second
• Companies today screen up to 1012 molecules

ROCS manual, OpenEye

Similarity-based approaches: Shape-focused methods
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From bioisosteric replacement to “scaffold hopping”

Estrogen

Diethylsilbestrol
27.01.2025 Johannes Kirchmair



27.01.2025 Johannes Kirchmair Page 74

…an exciting journey lies ahead of you….      …enjoy the trip!

Thanks for your attention!


