8th Advanced In Silico Drug Design workshop

27 - 31 January 2025 Olomouc, Czech Republic

Univerzita Palackého v Olomouci

PL

CACHE#1: searching for hit molecules in ultra-large chemical databases guided by de novo design

Pavel Polishchuk

Institute of Molecular and Translational Medicine Faculty of Medicine and Dentistry Palacky University Czech Republic <u>pavlo.polishchuk@upol.cz</u> <u>https://imtm.cz/laboratories/chemoinformatics-and-drug-design</u>

CACHE challenge

Competition among top chemoinformatics groups world-wide

Benefits supposed by organizers:

- Encourage development and improvement of computational tools
- 2. Create a platform for prospective validation and comparison of different modeling tools and pipelines
- 3. Identify hit compounds for challenging or emerging targets/diseases
- 4. Contribute to open science to accelerate researches in a chosen direction

The first CACHE challenge

COMPETITION #1

PREDICT HITS FOR THE WDR DOMAIN OF LRRK2

The first CACHE Challenge target is LRRK2, the most commonly mutated gene in familial Parkinson's Disease.

Participants are asked to find hits for the WD40 repeat (WDR) domain of LRRK2. Read more under Details below.

Why the WDR PD-associated LRRK2 mutations tend to promote LRRK2 filament formation and enhance domain? LRRK2 interaction with microtubules. Recent structural data reveals that only compounds stabilizing the open form of LRRK2 antagonize the pathogenic formation of LRRK2 filaments in cells, but most kinase inhibitors stabilize the closed form of LRRK2. An alternative and so far overlooked strategy is to pharmacologically target the WDR domain of LRRK2, which is juxtaposed to the kinase domain. The WDR domain in LRRK2 may be important for recruiting LRRK2 signalling partners or for binding to tubulin. WDR domains are diseaseassociated and druggable. Identifying chemical starting points binding to the WDR domain of LRRK2 is a novel approach to target this protein. **Potential impact** The public release of chemical starting points for an understudied domain of LRRK2 will offer opportunities to target LRRK2 via an allosteric mechanism and make PROTACs to induce its degradation with ligands not directly interfering with the catalytic activity of the target.

https://cache-challenge.org/

The challenge pipeline

Application opens 2021-12-01 Application closes 2022-01-31

Application form Download

TIMELINE

LRRK2 and WDR domain

No X-ray of protein-ligand complexes:

- unknown binding site
- unknown conformation of a protein in a bound state

No known active molecules:

- large chemical space to explore

Round 1: protein structure challenge

WDR domain structure: 6DLO

INTM Round 1: chemical space exploration challenge

Chemically reasonable mutations (CReM)

Chemically reasonable mutations (CReM)

Polishchuk, P., CReM: chemically reasonable mutations framework for structure generation. J. Cheminf. 2020, 12 (1), 28.

CREM1777121

CREM0340409

CREM1089720

CREM1507777

CREM1468894

50 de novo compounds ٠

- SA score < 3٠
- 11 reconstructed • retrosynthetic pathways with AiZynthFinder (2-5 steps)

CREM0329741

Round 1: strategy 1 (de novo design)

CREM1506273

CREM1661038

Round 1: strategy 2 (similarity search)

Round 1: experimental results

50 de novo + 100 similar compounds

91 compounds were selected (within the budget 9000\$)

82 compounds were synthesized

8 compounds demonstrated activity ($K_d = 25-117 \ \mu M$ by SPR)

59, K_d = 32 μ M

62, K_d = 25 μ M

76, $K_d = 74 \ \mu M$

Round 2: hit optimization (compound pool 1)

inactives

H₂Ć

87

HQ

H₂C

HNH

2.5M

Round 2: hit optimization (compound pool 2)

Round 2: hit optimization (compound pool 3)

Round 2: hit optimization (screening pipeline)

23 **Round 2: hit optimization (experimental results)**

38 compounds were selected (within the budget 4500\$)

35 compounds were synthesized

4 compounds demonstrated some effect in SPR

1 scaffold had confirmed selectivity

59, K_d = 32 μM

Summary of the CReM-based pipeline

Round 1

- 1.27M docking events and 700 MM-GBSA were enough to discover 8 primary hits among 82 compounds retrieved from Enamine REAL Space
- no human selection

Round 2

while 4 compounds demonstrated some effect on WDR among 35 tested ones, only one had confirmed selectivity. The observed SAR is inconclusive.

Pipelines of all participants

	MEII8/ DTD	
	WF1204 UHTD 🖒 DLD	
Kireev	WF1183 DLF DUHTD	
	WF1203 IHS HTD C MC	
	WF1198 DLD 🖒 HTD 🖒 MM	
	WF1184 DND 🖒 FSS 🖒 HTD	
	WF1201 HTD 🖒 LML 🖒 HTD 🖒 MC	
	WF1205 UHTD C H20 C MC	
	WF1191 HTD ML QM MC	
Koes	WF1181 MD 🖒 CE 🖒 DLD/HTD/CD	MC : medicinal chemist
	WF1179 DF 🖒 PH 🖒 PS 🖒 HTD	CE: conformational ensemble
Gorgulla	WF1195 MD CUHTD C FSS C CE C HTD	H2O: map stable water molec.
00184114	WF1208 DF 🖒 FSSC HTD C DLD	IHS: interaction hot spots SPBC: similar pocket
Rognan	WF1202 SPBC () IHS () DND () FSS	in PDB with bound compound
6	WF1206 CD 🖒 MD 🖒 MM 🖒 NNS	PS: pharmacophore search
Isaev / Cherkasov / Kurnikova	WF1209 DLD C CD C MD C FEC	PH: pharmacophore hypothesis
Schindler	WF1193 UHTD C DND C FSS HTD	DLD: deep learning docking
	WF1188 HTD HTD 🖒 ML 🖒 HTD LBVS 🖒 HTD	DMD: deep molecular dynamics NNS: NN scoring
	WF1186 DMD CE CE CHTD C DLD CHTD C DMD	DF: dock fragments
		HTD : high-throughput docking
		UHTD: ultra HTD
	WF1200 MC \rightarrow MM \rightarrow MD \rightarrow FSS \rightarrow MM \rightarrow MD	CD: consensus docking
Polishchuk	WF1210 MD \Rightarrow CE \Rightarrow DND \Rightarrow CD \Rightarrow MM \Rightarrow FSS \Rightarrow CD \Rightarrow MM	MM: molecular mechanics
	WF1212 DF 🖒 IHS 🖒 SPBC 🖒 PH 🖒 PS 🖒 DND 🖒 HTD	FEC: free energy calculation

Li, F. et al. CACHE Challenge #1: Targeting the WDR Domain of LRRK2, A Parkinson's Disease Associated Protein. *J. Chem. Inf. Model.* **2024**, 64 (22), 8521-8536.

Pipelines of all participants

	Pipelines of all participants				
	WF1187 DLD		P	ģ	
	WF1204 UHTD 🖒 DLD		test	adva d 2	
3 Kireev	WF1183 DLF C UHTD	ž	inds	spun	
	WF1203 IHS HTD C MC	articipi	ompou	ompou ng to F	
	WF1198 DLD 🖒 HTD 🖒 MM	1170	Ŭ 🕯	0.0	Hit rate
	WF1184 DND 🖒 FSS 🗘 HTD	11/9	84	2	2
	WF1201 HTD C LML C HTD C MC	1183	37	2	5
	WF1205 UHTD C H20 C MC	1184	65	2	3
		1186	99	11	11
		1187	72	4	6
T KOES		1188	113	3	3
	WEIL''S DF C PH C PS C HTD	1191	95	0	0
3 Gorgulla	WF1195 MD \Box UHTD \Box FSS \Box CE \Box HTD	1193	92	4	4
	WF1208 DF 🖒 FSSC HTD C DLD	1195	84	10	12
3 Rognan	WF1202 SPBC 🖒 IHS 🖒 DND 🖒 FSS	1198	79	0	0
1	WF1206 CD C MD C MM C NNS	1200	101	1	1
Isayev / Cherkasov / Kurnikova	WF1209 DLD C CD C MD FEC	1202	94	5	5
C Schindler		1203	105	2	2
		1204	71	0	0
	WFII88 HTD HTD L ML L HTD LBVS L HTR	1205	98	3	3
	WF1186 DMD \hookrightarrow CE \hookrightarrow HTD \hookrightarrow DLD \Leftrightarrow HTD \Leftrightarrow DMD	1206	83	0	0
	WF1207 MD 🖒 H20 🖒 PH 🖒 PS 🖒 HTD 🖒 PS	1207	101	1	1
	WF1200 MC 🖒 MM 🖒 MD 🖒 FSSC MM 🖒 MD	1208	100	4	4
3 Polishchuk	WF1210 MD \Rightarrow CE \Rightarrow DND \Rightarrow CD \Rightarrow MM \Rightarrow FSS \Rightarrow CD \Rightarrow MM \sim	1209	59	/	12
	WF1212 DF 🖒 IHS 🗘 SPBC 🖒 PH 🖒 PS 🖒 DND 🖒 HTD	1210	50	0	0

Li, F. et al. CACHE Challenge #1: Targeting the WDR Domain of LRRK2, A Parkinson's Disease Associated Protein. *J. Chem. Inf. Model.* **2024**, 64 (22), 8521-8536.

Dunn, I.; Pirhadi, S.; Wang, Y.; Ravindran, S.; Concepcion, C.; Koes, D. R. CACHE Challenge #1: Docking with GNINA Is All You Need. *J. Chem. Inf. Model.* **2024**, 64 (24), 9388-9396.

Gutkin, E.; Gusev, F.; Gentile, F.; Ban, F.; Koby, S. B.; Narangoda, C.; Isayev, O.; Cherkasov, A.; Kurnikova, M. G. In silico screening of LRRK2 WDR domain inhibitors using deep docking and free energy simulations. *Chem. Sci.* **2024**, 15 (23), 8800-8812.

Eguida, M.; Bret, G.; Sindt, F.; Li, F.; Chau, I.; Ackloo, S.; Arrowsmith, C.; Bolotokova, A.; Ghiabi, P.; Gibson, E.; et al. Subpocket Similarity-Based Hit Identification for Challenging Targets: Application to the WDR Domain of LRRK2. *J. Chem. Inf. Model.* **2024**, 64 (13), 5344-5355.

Attempt to solve X-ray structure

https://cache-challenge.org/results-cache-challenge-1

pubs.acs.org/jcim

Article

CACHE Challenge #1: Targeting the WDR Domain of LRRK2, A Parkinson's Disease Associated Protein

Fengling Li, Suzanne Ackloo, Cheryl H. Arrowsmith, Fuqiang Ban, Christopher J. Barden, Hartmut Beck, Jan Beránek, Francois Berenger, Albina Bolotokova, Guillaume Bret, Marko Breznik, Emanuele Carosati, Irene Chau, Yu Chen, Artem Cherkasov, Dennis Della Corte, Katrin Denzinger, Aiping Dong, Sorin Draga, Ian Dunn, Kristina Edfeldt, Aled Edwards, Merveille Eguida, Paul Eisenhuth, Lukas Friedrich, Alexander Fuerll, Spencer S Gardiner, Francesco Gentile, Pegah Ghiabi, Elisa Gibson, Marta Glavatskikh, Christoph Gorgulla, Judith Guenther, Anders Gunnarsson, Filipp Gusev, Evgeny Gutkin, Levon Halabelian, Rachel J. Harding, Alexander Hillisch, Laurent Hoffer, Anders Hogner, Scott Houliston, John J Irwin, Olexandr Isayev, Aleksandra Ivanova, Celien Jacquemard, Austin J Jarrett, Jan H. Jensen, Dmitri Kireev, Julian Kleber, S. Benjamin Koby, David Koes, Ashutosh Kumar, Maria G. Kurnikova, Alina Kutlushina, Uta Lessel, Fabian Liessmann, Sijie Liu, Wei Lu, Jens Meiler, Akhila Mettu, Guzel Minibaeva, Rocco Moretti, Connor J Morris, Chamali Narangoda, Theresa Noonan, Leon Obendorf, Szymon Pach, Amit Pandit, Sumera Perveen, Gennady Poda, Pavel Polishchuk, Kristina Puls, Vera Pütter, Didier Rognan, Dylan Roskams-Edris, Christina Schindler, François Sindt, Vojtěch Spiwok, Casper Steinmann, Rick L. Stevens, Valerij Talagayev, Damon Tingey, Oanh Vu, W. Patrick Walters, Xiaowen Wang, Zhenyu Wang, Gerhard Wolber, Clemens Alexander Wolf, Lars Wortmann, Hong Zeng, Carlos A. Zepeda, Kam Y. J. Zhang, Jixian Zhang, Shuangjia Zheng, and Matthieu Schapira*

Palacky University (Olomouc):

Guzel Minibaeva

el *i* aeva

Aleksandra Ivanova

Alina Kutlushina

<u>University of Chemistry and</u> <u>Technology (Prague):</u>

Dr. Vojtech Spiwok

Jan Beranek

Thank you for your attention

The work was supported by the Ministry of Education, Youth and Sports of the Czech Republic through INTER_EXCELLENCE II grant LUAUS23262, the e-INFRA CZ (ID:90254), projects ELIXIR-CZ (LM2023055) and CZ-OPENSCREEN (LM2023052). We also acknowledge the contributions from the project ENOCH (CZ.02.1.01/0.0/0.0/16_019/0000868).