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The uncomfortable truth about drug discovery

When you decide to go into the drug discovery...

Expectations:
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Plan of the talk

THIS 15 YOUR MACHINE EARNING SYSTEM?

YOP! YOU POUR THE DATA INTO THIS BIG
PILE OF LNEAR ALGEBRA, THEN COLLECT

1. Why modern drug discovery struggles

o Acrash course of upsetting the investors THE ANSLIERS ON THE OTHER SIDE.
2. Can Al make it struggle a bit less? WHAT IF THE ANSLERS ARE URONG?)
JUST STIR THE PILE UNTIL
o Ashort guide for giving hope to upset THEY START LOOKING RIGHT.

investors

3. Some shameless self-promotion

o Investors don't trust this anyway




Modern drug discovery struggles badly

s || sy | opimation et Twel [ Phmel msem oS Reasons of stagnation
Cycle time ~ 1.5 year ~ 1.5 year ~15year ~1year ~1.5year ~2.5 year ~2.5 year ~ 1.5 year
% Cost per NME ~3% ~6% ~17% ~T7% ~15% ~21% ~26% ~5% o The COSt per drug
Probability of success ~66.4% ~48.6% ~59%
increases

® Development time
doesn’t improve

® Failure rate is

persistently >90%
>10,000 ~250 mm_ ® Only 6.3% composite
candidates candidates
Phase Il & Phase I11 Dose, Efficacy, Toxicity success rate in 2022
Phase I PK, Dose escalation, Toxicity
Pre-clinical test SAR, Drug-like properties, Solubility
& Permeability, ADME, Plasma PK
Lead optimization Efficacy, Toxicity
Compound screening Visual screening, HTS

Target validation Disease models, Target identification, Target validation




Eroom’s law: are we cursed?

$ 1B R&D used to yield 0.6
0 O | drugs

10°8
Computations Drugs per $ 1B
per kWh R&D spent
10712
10M5] 1100
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@® Eroom’s Law: Drug discovery is becoming slower and more expensive over time
@ Moore’s Law: Computing power becomes faster and less expensive over time

Computational resources become cheaper but this doesn't help at all so far...




Eroom’s law explained (kind of)

The 'better than the Beatles' problem: very hard to beat established
treatments to the extent that it's economically viable.

The 'cautious regulator' problem: level of required evidence in trials
become a burden.

The 'throw money at it' tendency: The tendency to add excessive
resources to R&D. “One woman gives birth in 9 month. Let hire 9 women
to give a birth in 1 month!”

The 'basic research-brute force' bias: The tendency to overestimate the
ability of advances in basic research. Late stages continue to fail despite
huge amounts of obtained data.



Cat Al beat the Eroom’s law?

e Alis generally considered as a rescue
o General paradigm change.
o Estimated 60% more drugs per $1B by 2030.

e The 'better than the Beatles' problem:
o Cutting the R&D cost to the extent that even moderate improvement will pay for itself.
o Finding fundamentally different modalities and targets.

e The 'cautious regulator' problem:
o Predicting the unfavourable clinical outcomes very early to cut futile projects.
o Automate and streamline the trials.

e The 'throw money at it’' tendency:
o Better throw money at us:)

e The 'basic research-brute force' bias:
o Making multi-domain predictive models including all available big data and hope that
this will reduce the % of late stage failures.



Can Al save us?

THE INFLUENCE OF Al

$0.93B will be saved on each drug

60% more drugs per $1B

This small gap is what
we are fighting for...

O

Drugs per $ 1B
10 R&D spent

0
10”8 1
Computations
per kKkWh 1012
10*15
1950 1960 1970 1980 1990 2010 2030

® Eroom’s Law @® Moore’s Law




Problems Al can solve

The problem of the context ~ Intractable amount of  workflow construction:

. data:
aps:
gap e Which in silico methods to use?

Multiple knowledge domains ~® 50+B chemical Which experiments to employ?

don't play together well Spaces e Which cellular and animal
o 40+ ADMET models?
e Chemistry endpoints e How many iterations to
e Biology e High-throughput perform?
e Simulations readouts (HTS, e What data should be
e Bioinformatics DEL, RNA display, generated?
e Population omics Phage display,...) e Whatis the signal to stop?
e Patient data e Trials outcomes

Traditional approach: We need to develop drugs quickly, reliably and
cheaply. Choose any two of these.

Al approach: Why not all at once?



Applications of Al in drug discovery

Target identification Early discovery
e  Multi-omics (genomics, transcriptomics, e De novo molecular generation
proteomics, interactomics, metabolomics) e Alvirtual screening
e Knowledge graphs : ADMET prediction
[ J

e Unstructured data scraping (papers, patents) g%(;rp:;lsrgggﬁgomprehenS|on

Late discovery Clinical studies
e Formulation optimization e C(Clinical study planning and monitoring
e IND and clinical studies outcome prediction e Risk factors prediction
e Data mining for patent clearance e Automated patient recruitment and triage
e Simulated in vivo testing e On-the fly adaptive data analysis

Data management
e Automatic data mining and integration
e Data quality assessment
e Data generation plans
e Explainable data



Al in early drug discovery

e Protein structure prediction
o AlphaFold, RoseTTAFold

e Binding pocket prediction and prioritization

e Chemical space generation
o Molecular generators (Chemistry42, Iktos)
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o  Scaffold hopping e
o  Substituents generation =t = i A A
. Ligand bose prediction (A| docking) il %?;o"i‘z::* | ?:.,:“f* —

Stage | Stage Il

o DiffDock, UniMol, ArtiDock

e Predicting dynamic properties
o  Protein ensembles (Al conformation generation /
Al-enhanced MD)
o Transient/ cryptic binding pockets prediction




Case study: LLMs in binding pocket prioritization

e There are a lot of algorithmic techniques
to find “pocket like” cavities on the protein

surface.
o Fpocket is one of the most used.

e Predicts much more pockets than
biologically relevant or somehow

validated

o Tedious manual filtration by searching the
literature for residues that are confirmed to be
involved in the ligand binding.

e (Can we automate it by using LLMs?




Experimental setup

e Test set of proteins: e Articles complexity tears:
o DNA polymerase alpha catalytic subunit o One binding pocket for single target.
o Tyrosine-protein kinase ABL1 o Multiple binding pockets for single
o 5-hydroxytryptamine receptor 2A target
o Muscarinic acetylcholine receptor M2/3 g. P
o Sodium channel types 4, 7 o Multiple binding pockets for target
o Programmed cell death 1 ligand 1 and other proteins.
o Gamma-aminobutyric acid receptor o No pocket description (negative
o KRas kinase control)
o Dihydroorotate dehydrogenase '

o Mixed lineage kinase domain-like protein
e For each protein 4-7 peer-reviewed
research articles (45 in total) + 3D
structures from PDB. sharesiefrcane | | MR LouBor
e Baseline defined as pockets identified | s
by several human experts using the

Same |iteratu re. STEP 1 STEP 2 STEP 3 STEP 4

sites




Results improves as LLMs progress

1.0

0.8
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o

F1 Amino Acids
o
E 5

0.2

0.0

LLM prompt (simplified):
You are a Senior Medicinal Chemist exploring binding pockets for {target_protein}".
1. determine the number of the unique binding pockets in {target_protein} described in the text;
2. make a short, very specific and discriminative characteristic for each of the binding pockets;
3. output the list of amino acids forming each of the binding pockets.
1.0
GPT4 >> GPT3.5 oL GPT4 prompt tuning SRl
mmm validation mmm validation
mm test 68 - m test
0.70
0.63 0:63 » 0.63 0.63
§ 0.6
:
<04
0.21
gpt-4-0125-preview gpt-3.5-turbo 0.0
Model gpt-4-0125-preview + tuned prompts gpt-4-0125-preview baseline

Pipeline



Larger model is not necessarily better

e GPT4o is even better than GPT4
e GPT40-miniis as good as the “large” (and more expensive) 40!
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Merging and filtering the pockets

e LLMis good in filtering out
“bad” pockets

e However, post-processing is
required to merge
overlapping “good” pockets
and to tidy them up.

ROC AUC =0.74
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LLMs in binding pocket prioritization: conclusions

e Accuracy of LLM pocket prioritization with
GPT4o0 is overall decent but not great.

e Various tricks and post-processing are still
needed to get usable results.

e LLMs are progressing fast in understanding

biological context and reasoning, but...
o Price and inference time also increase
o  Scientific papers remain hard to parse (tables,
figures, etc)
e C(Claims that “LLMs will soon replace human

researchers” look unjustified so far.
o LLMs are likely to be our assistants rather than our
replacement.

o OpenAl promises that 03 will be a game changer.
Will see.

* Satiric CGI from Boston dynamics, no
animals were harmed.



Al virtual screening pipeline

Chemical space

On/Off Target ID & exploration and initial Selectivity ADME/Tox safety Ensemble Al d_ocking AI-assis'tefj FEP
Pocket ID Al-powered screening assessment and rescoring (lead optimization)
e X N 1 B p N N

™ L o]
Knowledge graph Chemical space generation :

Querying the proprietary Direct in-pocket Al molecular aila. a

knowledge graph for target and generation with integration of 5M o i o
off-target identification stock and 55B virtual space A 4

. J ¥
™

Drug-target interactions )
Semi ligand-based Al model for 3 -
DTI prediction tuned for 17K ( Custom Al multitask J

4 >
Target characterization
Structural analysis, assessment of
known ligand poses, off-targets

Ne TR )

\e. svaluation proteins of different tiers | Proteome-wide DTI model [AI docking with ArtiDockJ [ Ad: ptive alclh‘:m":ia' J
- selectivity ~17K proteins pathway optimization
Al pocket identification (" Cluster-aware screening ) — = ' 38 PK/ADMET endpoints N K
Allosteric/cryptic pocket detection Smart clustering of the chemical Explicit selectivity of Domain-specific Al Al-driven Bayesian
with druggability assessment via space + Al-guided selection of up to 100 off-targets rescoring for activity model for adaptive
ksta!ic/dynamic structure analysis S clusters for screening ) using 3DiffPharm ( 32 physchem/drug-like] ligand prioritization
N J ~ £ G AN i X .
f ( ——
Direct Al-based prediction of\ —— — S—
large conformational changes 2
- . : meatr't ¢:otnsenlsust Predicted selective Safs and affertive LLM-assisted ( Optimized
. AL SR IEILD ) p— compounds compounds consensus compounds for the
& active compounds ——» —> — | scoring functions —> next discovery
4 —_— TO '| % — - — (80+ parameters) — z 5
) Top 10% P 500K ] iteration J)
MD simulations with -'1 K
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— )

Multi-fidelity experimental data integration via transfer learning

'JExperimentaI validation |

Producti Base Al model Multi-fidelity dataset %
f—""m'?"- i T 2 of candidate compounds
\_ ~ ! - Molecule
Al enhanced o 5 Ja00-3000 : S o ! 10000 vy (2 synthesis,
i i ofie| compounds | o | LF compounds {
conformational sampling ke :-{o —— oy | ) | binding, in vitro/in vivo
of A 1. activity, ADMET assays
Fine-tune LF Ncl'mkh;;"l:l‘\:) 3 | 3 i R /
GNN on HF Network (GNN) | : i —
e 10K + 1K compounds




Al virtual screening

e Very fast (2-3 order of magnitude faster) initial filtration of the chemical
space

e Self-balancing: many known compounds — ligand-based approach; few
compounds — structure based approach.

e Separate models for protein tier lists (depending on the number of known
structures and ligands).

e 70+% accuracy on “favourable” targets.

e Early assessment of ADMET — fewer toxicity failures



ADMET prediction

MULTI-PARAMETRIC OPTIMISATION OF 80+ PK/ADME-TOX AND PHYSCHEM PROPERTIES

N

ADME (HUMAN)

Absorption:
* HIA
+ P-Glycoprotein Substrate-like Binding
* P-glycoprotein Inhibition
« P-glycoprotein Substrate-like Binding
Permeability
« Lipid bilayer permeability coefficient
(logPerm)
= Partitioning into the lipid bilayers
(LopK)
* CACO-2 cell permeability
+ PAMPA (Parallel Artificial Membrane
Permeability Assay)
Distribution:
« Plasma Protein Binding
« Blood-Brain Barrier
« Volume Distribution
Metabolism:
* Metabolic stability
+ CYPIA2 inhibition
* CYP3A4 inhibition
CYP2C19 inhibition
CYP2C9 inhibition
CYP2D6 inhibition
CYP1A2 Substrate-like binding
CYP2D6 Substrate-like binding
CYP3A4 Substrate-like binding
CYP2C19 Substrate-like binding
CYP2C9 Substrate-like binding
Excretion:
« Plasma clearance

+ Renal clearance

TOXICITY (HUMAN)

Specific toxicity:

Carcinogenecity (OSF)
Carcinogenecity (ISF)
Mutagenicity (AMES test)
Hepatotoxicity (DILD
Cardiotoxicity (hERG blocking)
Aromatase Inhibition
Androgen Receptor Binding

Androgen Receptor Antagonism

Androgen Receptor Agonism
Estrogen Receptor Binding
Estrogen Receptor Antagonism
Estrogen Receptor Agonism
Skin irritancy

Acute toxicity:

Acute oral toxicity prediction

Cytotoxicity:

HEK293 (Embryonic kidney
fibroblasts)

A549 (Lung carcinoma cells)
MCF7 (Breast carcinoma cells)

- 4

-

We possess proprietary datasets
allowing us to expand the set of
desirable ADME-Tox properties to
more than 60 endpoints based on

rat, mouse and dog models.
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v
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PHYSCHEM AND DRUG LIKENESS

Drug-like Filters:

Lipinski Rule of 5
Ghose

Veber

REOS

Rule of 3

PhysChem Parameters:

Molecular Weight

Hydrogen Bond Donors
Hydrogen Bond Acceptors
Number of Rotatable Bonds
Number of Rings

Number of Aromatic Rings
Number of Atoms

Number of Heavy Atoms
Formal Charge

FCsp3

LogP

LogS

LogD

Stability in aqueous solution
Molar Refractivity
Topological Polar Surface Area
pKa

CNS MPO

CNS MPO v2
Synthesisability Score

Substructure Filters:

Glaxo
Dundee

BMS

PAINS
SureChEMBL
MLSMR
Inpharmatica
LINT

N




Case study: membrane permeability

True-Predict Dependency (stage: cv)

e MolMeDb data for
o Membrane
permeability
o Membrane
partitioning
e Receptor.Al
MultiTask ADMET
NN architecture
e AutoML automatic
featurization

Task Samples MSE (cv) MSE (test) MAE (cv) MAE (test) R2 (cv) R2 (test)
T logK DOPC 434661 0.100 0.114 0.238 0.259 0.950 0.943
2 logK octanol 449128 0.044 0.057 0.155 0171 0.976 0.969
3 logP DOPC 434568 0.424 0.484 0.469 0.510 0.923 0.911

4 logP GENER 3717 2137 2.770 0.851 0.882 0.759 0.682



Case study: membrane permeability

True-Predict Dependency (stage: cv)

This is too good to be true...

Task Samples MSE (cv) MSE (test) MAE (cv) MAE (test) R2 (cv) R2 (test)
T logK DOPC 434661 0.100 0.114 0.238 0.259 0.950 0.943
2 logK octanol 449128 0.044 0.057 0.155 0171 0.976 0.969
3 logP DOPC 434568 0.424 0.484 0.469 0.510 0.923 0.911

4 logP GENER 3717 2137 2.770 0.851 0.882 0.759 0.682



FAIR data? Ha-ha! :

e The LogK data collected in MolMeDb appeared to be not the raw data but
the predictions
o ALOGPS 2.1: an ancient (2002) Associative Neural Network (ASNN) approach.

e The raw data were from PHYSPROP database:
o No longer publicly available from ~2020, all links are broken.

o Claimed to be moved to EPI Suite software from US Environmental Protection Agency.
o EPI Suite docs mention the same broken links.
O

Binary .db files in the installation are not readable (undocumented proprietary format).

e Data archeology:

o A paper from 2017 (10.1021/acs.jcim.6b00625) used PHYSPROP (still available back then) to
make a curated subset of data and to retrain the models —curated subset still public!

o Initial PHYSPROP had tons of issues (erroneous structures, inconsistencies among the
chemical names)

o In curated set: 81 invalid SMILES, 236 too small, 93 mixtures, 42 organometallic, 22 bad
valences, 1 duplicate.

o Remained 13732 compounds.


https://doi.org/10.1021%2Facs.jcim.6b00625

FAIR data? Ha-ha! :

Machine

Learning

Artificial
Intellifence

X Findable

X Accessible
X Interoperable
X Reusable

Nice job, US Environmental
Protection agency! &

+ Generative Al

+ Agentic Al




Membrane permeability: corrected

True-Predict Dependency (stage: test)

e Model retrained
on curated raw
data

e Nowits
reasonable!

e Slightly better than
existing model

(~0.93)
Task Samples MSE (cv) MSE (tes MAE (cv) MAE (test) R2 (cv) R2 (test)
1 logK DOPC 434661 0.100 0.114 0.238 0.259 0.950 + 0.943
2 logK octanol 449128 0.044 0.057 0.155 0.177 0.942 0.945
3 logP DOPC 434568 0.424 0.484 0.469 0.510 0.923 0.911

4 logP GENER 3717 2137 2.770 0.851 0.882 0.759 0.682



TDC benchmarks: ADMET Al models open competition

Task
1 Caco-2
2 HIA
3 Pgp-sub

4 Bioavailability

5 BBB
6 PPB
7 VD

&  CYP2D6-inh

9 CYP3A4-inh

10 CYP2C9-inh

11 CYP2D6-sub

12 CYP3A4-sub

13 CYP2C9-sub

14 hERG

15 AMES

16 DILI

Metric
MAE
ROC-AUC
ROC-AUC
ROC-AUC
ROC-AUC
MAE
Spearman
PR-AUC
PR-AUC
PR-AUC
PR-AUC
ROC-AUC
PR-AUC
ROC-AUC
ROC-AUC

ROC-AUC

TDC Best RECEPTOR Best

0.988 + 0.033

0.935 + 0.002

0.748 + 0.006

0.930 + 0.004

7.811+0.163

0.627 £ 0.010

0.726 + 0.004

0.884 +0.001

0.800 + 0.001

0.736 + 0.024

0.662 + 0.031

0.441 £ 0.033

0.874 +£0.014

0.871 + 0.002

0.925 + 0.005

SAAS Data (Test)

0.293

0.944

0.897

0.811

0.979

9.714

0.750

0.880

0.869

0.874

0.835

0.920

0.678

0.922

0.930

0.815

TDC open
benchmarks set
https://tdcommons.ai

o 22 endpoints

o Public leaderboards

We are overall the
best on TDC metrics

Many endpoints are
the absolute best
Official participation
planned in 28624 2025



https://tdcommons.ai

Al docking

e Al models trained on existing protein-ligand complexes.
o ~10-20k high quality complexes only
o Not physics-based, force field agnostic

e SMILE or 3D conformer + binding pocket as an input, binding pose as

an output.
o May produce distance matrix or point in dihedral space + post-processing to the
pose

e Various representations of protein (AA, residue level, graph, distance
matrix, etc.)

e Flexible balance between speed and accuracy



The problem of data with protein-ligand complexes

e Thereis alimited number of //
experimentally determined 20000

protein-ligand complexes
o Total number of complexes: ~55k
o Number of all complexes with measured
affinities (X-ray, Cryo-EM, NMR): < 20k
o Hi-quality complexes with binding affinity
annotations: ~10k

e Only 1655 ligands present in >1

1
— Ligand
—— Protein
—— Protein Family

//

i

15000 -

10000 -

Number of entries

5000 -

Complexes 0 2000 4000 60'00. so'o_o. 10000 12000
® ~1 500 prote|n b|nd to 80% Of a” ||gands Number of unique entities
e ~100 protein families represent 60% of Statistics of PDBbind database

all data
e Very limited and skewed dataset for ML!



Data augmentation technique

e Take the statistical distributions of interactions in real complexes.

e Generate artificial “binding pockets” around diverse ligands following
these distributions.

e Mix artificial pockets to real ones for model training at different
proportions.

e Assumed that all major non-bond interactions are present in
experimental data but their combinations are not adequately sampled.

e Augmented data teaches the model to recognize corner cases and
combinatorial variety of interactions that are absent in the
experimental training set.



Data augmentation: the details

#  Pocket feature Ligand feature Interaction type
1  Aromatic ring Aromatic ring Pi stacking
2 Amide group Aromatic ring Amide-pi
3 Aromatic ring Amide group Amide-pi
4 Aromatic ring Cationic atom Cation-pi
5  Hydrogen bond donor Hydrogen bond Hydrogen bond
acceptor
6  Hydrogen bond Hydrogen bond donor  Hydrogen bond
acceptor
7  Hydrogen bond Halogen atom Halogen bond
acceptor

8  Cationic atom Anionic atom Electrostatic
9  Anionic atom Cationic atom Electrostatic
10 Cationic atom Aromatic ring Cation-pi
11 Cor S atom F atom Hydrophobic
12 CorS atom Cl, Br or I atom Hydrophobic
13 CorSatom C or S atom Hydrophobic

hydrophobe (C/S-C/S) 255262 (74.3%)

hydrogen bond 52603 (15.3%)
hydrophobe (C/S-Cl/Br/l) 9423(2.7%).
cation-anion 8031 (2.3%)
pi stacking 6143 (1.8%)
amide-pi 5862 (1.7%)
hydrophobe (C/S-F) 065 (0.9%)
cation-pi 2623 (0.8%)
halogen bond 748 (0.2%)
10° 10* 10°

>

Probability Density

Probability Density

(9]

Probability Density

0.035]
0.030]
0.025]
0.020

0.015]

0.08]
0.07
0.06
0.05]
0.04
0.03]
0.02
0.01
0.00]

Hydrophobic

hydrophobic (C,5)-(C,S)

— Experimental
= Artificial

32 34 36 38 40 42 44
Distance (A)

hydrophobic (C,S)-(Cl,Br,1)

32 34 36 38 40 42 44
Distance (A)

hydrophobic (C,S)-(F)

30 32 34 36 38
Distance (A)

Probability Distribution

Probability Distribution

Probability Distribution

hydrophobic (C,S)-(C,S)

= Experimental
= Artificial

0.20]

hydrophobic (C,S)-(Cl,Br,1)

0.15)

0.10]

0.05
PEISFEEZRASEIARRIOORQ
IoIERAEZR323852853

Residue
hydrophobic (C,S)-(F)
0.15)
0.10!

0.05]

Probability Density

Probability Density

H-bonds

ligand acceptor - pocket donor
— Experimental
— Arificial

ligand acceptor - pocket donor ligand acceptor - pocket donor

= Experimental
= Artificial

Probability Density
Probability Distribution

" Experimental (DAY

24 26 28 30 32 34 36 38

Distance (&) D-HAAY Angles () Residue
pocket acceptor - ligand donor g POcKketacceptor - ligand donor pocket acceptor - ligand danor
005,
007,
004 2 006 2
003, & 00 5
2 004 z
0.0 3 o003 3
£ o £
001
001
0.00] 0.00,
24 26 28 30 32 34 36 38 105 120 135 150 165

Distance (A) D-HAH-AY Angles ()

e Reasonable correspondence of
distributions

e  Potential of improvement at the
cost of model training time

e Potential to add explicit ions and
cofactors

10.1039/D3RA08147H



https://doi.org/10.1039/D3RA08147H

ArtiDock: next-gen ligand binding pose prediction

e Small model based on proprietary lightweight GNN architecture

o Fast training and inference.

e Includes only the binding pocket

o Less structural noise.
o Much smaller and faster model.

e Augmenting limited data on protein-ligand complexes with artificial
pockets

o Algorithmic technique for generating “fake” pockets around diverse real ligands.
o Mimics statistical distributions of various non-bond interactions from experimental

pockets.
o Provides much more combinations of interactions than available in experimental pockets.

e Ability to integrate protein dynamics

o Incorporation of processed MD trajectories



ArtiDock performance: Astex dataset

-

Percentage of predictions

Comparative performance of the docking methods
Astex Diverse set

87% RMSD < 24
RMSD < 2A & PoseBusters-Valid

64% -
NSNS \
56% 45% \
47% *\\\ \ S
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s s |32 x = 3§ g 2
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: 2 ¢ 3 g 3z
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Classical Deep Learning-based

Astex is a standard
dataset for docking
benchmarks

An older set created
before the Al hype

Considered not
particularly
challenging for Al
methods




Percentage of predictions

ArtiDock performance: PoseBusters dataset
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PoseBusters dataset

DOI: 10.1039/D3SC04185A

Includes multiple structure quality
metrics beyond RMSD

Designed to ashame Al docking
Ashamed by the next-gen Al docking

©

PoseBusters versions

V1 was made public in 2023 in the
preprint

V3 published and peer reviewed

V3 is adjusted in favor of conventional
docking and against Al even more
(artificial bias)

Latest Al models in 2025 seem to be
overfitted against it!


https://doi.org/10.1039/D3SC04185A

e N
Percentage of predictions passing quality check from the PoseBusters

ArtiDock performance

-§ 80%
e Outperforms comparable ML 5
methods. o 0%
e On par with conventional docking. & a0%
e Faster than anything else of g
comparable quality. g 2%
0%
Approximate Runtime Per Sample for >15 min % §’ é g §' §' g g! § g %
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"8 s3Il
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Detailed comparison with Glide and UniMol

RMSD Thesholds, PoseBusters v3
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Conclusions

e Al drug discovery techniques are here to
stay.

"THERE ARE NO
MORE HOMANS'

PROVE YOU

e Pharma companies adoption increases. Reg Mot

e Data mining and analysis going to be

dominated by LLMs.

e Progressive substitution of the
“physics-based techniques” by “data
driven” ones (will docking finally die for
good?) correcT

e Datais a new oil (but nobody wants to
collect and curate it)
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