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Plan of the talk
1. Why modern drug discovery struggles

○ A crash course of upsetting the investors

2. Can AI make it struggle a bit less? 

○ A short guide for giving hope to upset 
investors

3. Some shameless self-promotion

○ Investors don’t trust this anyway



Modern drug discovery struggles badly
Reasons of stagnation 

● The cost per drug 
increases

● Development time 
doesn’t improve

● Failure rate is 
persistently >90%

● Only 6.3% composite 
success rate in 2022



Eroom’s law: are we cursed?

Computational resources become cheaper but this doesn’t help at all so far…



Eroom’s law explained (kind of)
● The 'better than the Beatles' problem: very hard to beat established 

treatments to the extent that it’s economically viable.

● The 'cautious regulator' problem: level of required evidence in trials 
become a burden.

● The 'throw money at it' tendency: The tendency to add excessive 
resources to R&D. “One woman gives birth in 9 month. Let hire 9 women 
to give a birth in 1 month!”

● The 'basic research–brute force' bias: The tendency to overestimate the 
ability of advances in basic research. Late stages continue to fail despite 
huge amounts of obtained data.



Cat AI beat the Eroom’s law?
● AI is generally considered as a rescue

○ General paradigm change.
○ Estimated 60% more drugs per $1B by 2030.

● The 'better than the Beatles' problem:
○ Cutting the R&D cost to the extent that even moderate improvement will pay for itself.
○ Finding fundamentally different modalities and targets.

● The 'cautious regulator' problem:
○ Predicting the unfavourable clinical outcomes very early to cut futile projects.
○ Automate and streamline the trials.

● The 'throw money at it' tendency:
○ Better throw money at us :)

● The 'basic research–brute force' bias:
○ Making multi-domain predictive models including all available big data and hope that 

this will reduce the % of late stage failures.



Can AI save us?
This small gap is what 
we are fighting for…



Problems AI can solve
The problem of the context 
gaps:

Multiple knowledge domains 
don’t play together well

● Chemistry
● Biology
● Simulations
● Bioinformatics
● Population omics
● Patient data

Intractable amount of 
data:

● 50+B chemical 
spaces

● 40+ ADMET 
endpoints

● High-throughput 
readouts (HTS, 
DEL, RNA display, 
Phage display,...)

● Trials outcomes

Workflow construction:

● Which in silico methods to use?
● Which experiments to employ?
● Which cellular and animal 

models?
● How many iterations to 

perform?
● What data should be 

generated?
● What is the signal to stop?

Traditional approach: We need to develop drugs quickly, reliably and 
cheaply. Choose any two of these.

AI approach: Why not all at once?



Applications of AI in drug discovery
Target identification

● Multi-omics (genomics, transcriptomics, 
proteomics, interactomics, metabolomics)

● Knowledge graphs
● Unstructured data scraping (papers, patents)

Early discovery
● De novo molecular generation
● AI virtual screening
● ADMET prediction
● Automatic QSAR comprehension
● Drug repurposing 

Late discovery
● Formulation optimization 
● IND and clinical studies outcome prediction
● Data mining for patent clearance
● Simulated in vivo testing

Clinical studies
● Clinical study planning and monitoring
● Risk factors prediction
● Automated patient recruitment and triage
● On-the fly adaptive data analysis

Data management
● Automatic data mining and integration
● Data quality assessment
● Data generation plans
● Explainable data



AI in early drug discovery
● Protein structure prediction

○ AlphaFold, RoseTTAFold

● Binding pocket prediction and prioritization

● Chemical space generation
○ Molecular generators (Chemistry42, Iktos)
○ Scaffold hopping
○ Substituents generation

● Ligand pose prediction (AI docking)
○ DiffDock, UniMol, ArtiDock

● Predicting dynamic properties
○ Protein ensembles (AI conformation generation / 

AI-enhanced MD)
○ Transient / cryptic binding pockets prediction



Case study: LLMs in binding pocket prioritization
● There are a lot of algorithmic techniques 

to find “pocket like” cavities on the protein 
surface.

○ Fpocket is one of the most used.

● Predicts much more pockets than 
biologically relevant or somehow 
validated

○ Tedious manual filtration by searching the 
literature for residues that are confirmed to be 
involved in the ligand binding.

● Can we automate it by using LLMs?



Experimental setup
● Test set of proteins:

○ DNA polymerase alpha catalytic subunit
○ Tyrosine-protein kinase  ABL1
○ 5-hydroxytryptamine  receptor  2A
○ Muscarinic acetylcholine receptor  M2/3
○ Sodium channel types 4, 7
○ Programmed cell death 1 ligand 1
○ Gamma-aminobutyric acid receptor
○ KRas kinase
○ Dihydroorotate dehydrogenase
○ Mixed lineage kinase domain-like protein

● For each protein 4-7 peer-reviewed 
research articles (45 in total) + 3D 
structures from PDB.

● Baseline defined as pockets identified 
by several human experts using the 
same literature.

● Articles complexity tears:
○ One binding pocket for single target.
○ Multiple binding pockets for single 

target.
○ Multiple binding pockets for target 

and other proteins. 
○ No pocket description (negative 

control).



Results improves as LLMs progress
● LLM prompt (simplified):

You are a Senior Medicinal Chemist exploring binding pockets for {target_protein}". 
1. determine the number of the unique binding pockets in {target_protein} described in the text;
2. make a short, very specific and discriminative characteristic for each of the binding pockets;
3. output the list of amino acids forming each of the binding pockets.

GPT4 >> GPT3.5 GPT4 prompt tuning



Larger model is not necessarily better
● GPT4o is even better than GPT4
● GPT4o-mini is as good as the “large” (and more expensive) 4o!



Merging and filtering the pockets
● LLM is good in filtering out 

“bad” pockets
● However, post-processing is 

required to merge 
overlapping “good” pockets 
and to tidy them up.



● Accuracy of LLM pocket prioritization with 
GPT4o is overall decent but not great.

● Various tricks and post-processing are still 
needed to get usable results.

● LLMs are progressing fast in understanding 
biological context and reasoning, but…

○ Price and inference time also increase
○ Scientific papers remain hard to parse (tables, 

figures, etc)
● Claims that “LLMs will soon replace human 

researchers” look unjustified so far.
○ LLMs are likely to be our assistants rather than our 

replacement.
○ OpenAI promises that o3 will be a game changer. 

Will see.

LLMs in binding pocket prioritization: conclusions

* Satiric CGI from Boston dynamics, no 
animals were harmed.



AI virtual screening pipeline



AI virtual screening

● Very fast (2-3 order of magnitude faster) initial filtration of the chemical 
space

● Self-balancing: many known compounds → ligand-based approach; few 
compounds → structure based approach. 

● Separate models for protein tier lists (depending on the number of known 
structures and ligands).

● 70+% accuracy on “favourable” targets.
● Early assessment of ADMET → fewer toxicity failures



ADMET prediction



Case study: membrane permeability
● MolMeDb data for

○ Membrane 
permeability

○ Membrane 
partitioning

● Receptor.AI 
MultiTask ADMET 
NN architecture

● AutoML automatic 
featurization



Case study: membrane permeability

This is too good to be true…



FAIR data? Ha-ha! :)
● The LogK data collected in MolMeDb appeared to be not the raw data but 

the predictions 
○ ALOGPS 2.1: an ancient (2002) Associative Neural Network (ASNN) approach.

● The raw data were from PHYSPROP database:
○ No longer publicly available from ~2020, all links are broken.
○ Claimed to be moved to EPI Suite software from US Environmental Protection Agency.
○ EPI Suite docs mention the same broken links.
○ Binary .db files in the installation are not readable (undocumented proprietary format).

● Data archeology:
○ A paper from 2017 (10.1021/acs.jcim.6b00625) used PHYSPROP (still available back then) to 

make a curated subset of data and to retrain the models →curated subset still public!
○ Initial PHYSPROP had tons of issues (erroneous structures, inconsistencies among the 

chemical names)
○ In curated set: 81 invalid SMILES, 236 too small, 93 mixtures, 42 organometallic, 22 bad 

valences, 1 duplicate.
○ Remained 13732 compounds.

https://doi.org/10.1021%2Facs.jcim.6b00625


FAIR data? Ha-ha! :)

❌ Findable 
❌ Accessible 
❌ Interoperable 
❌ Reusable

Nice job, US Environmental 
Protection agency! 😉



Membrane permeability: corrected

0.942             0.945

● Model retrained 
on curated raw 
data

● Now it’s 
reasonable!

● Slightly better than 
existing model 
(~0.93)



TDC benchmarks: ADMET AI models open competition
● TDC open 

benchmarks set 
https://tdcommons.ai 

○ 22 endpoints

○ Public leaderboards

● We are overall the 
best on TDC metrics

● Many endpoints are 
the absolute best

● Official participation 
planned in 2024 2025

https://tdcommons.ai


AI docking
● AI models trained on existing protein-ligand complexes.

○ ~10-20k high quality complexes only
○ Not physics-based, force field agnostic

● SMILE or 3D conformer + binding pocket as an input, binding pose as 
an output.

○ May produce distance matrix or point in dihedral space + post-processing to the 
pose

● Various representations of protein (AA, residue level, graph, distance 
matrix, etc.)

● Flexible balance between speed and accuracy



The problem of data with protein-ligand complexes
● There is a limited number of 

experimentally determined 
protein–ligand complexes

○ Total number of complexes: ~55k
○ Number of all complexes with measured 

affinities (X-ray, Cryo-EM, NMR): < 20k
○ Hi-quality complexes with binding affinity 

annotations: ~10k
● Only 1655 ligands present in >1 

complexes
● ~1500 protein bind to 80% of all ligands
● ~100 protein families represent 60% of 

all data
● Very limited and skewed dataset for ML!

Statistics of PDBbind database



Data augmentation technique
● Take the statistical distributions of interactions in real complexes.

● Generate artificial “binding pockets” around diverse ligands following 
these distributions.

● Mix artificial pockets to real ones for model training at different 
proportions.

● Assumed that all major non-bond interactions are present in 
experimental data but their combinations are not adequately sampled.

● Augmented data teaches the model to recognize corner cases and 
combinatorial variety of interactions that are absent in the 
experimental training set.



Data augmentation: the details

● Reasonable correspondence of 
distributions

● Potential of improvement at the 
cost of model training time

● Potential to add explicit ions and 
cofactors

Hydrophobic H-bonds

DOI: 10.1039/D3RA08147H

https://doi.org/10.1039/D3RA08147H


ArtiDock: next-gen ligand binding pose prediction
● Small model based on proprietary lightweight GNN architecture

○ Fast training and inference.

● Includes only the binding pocket
○ Less structural noise.
○ Much smaller and faster model.

● Augmenting limited data on protein-ligand complexes with artificial 
pockets

○ Algorithmic technique for generating “fake” pockets around diverse real ligands.
○ Mimics statistical distributions of various non-bond interactions from experimental 

pockets.
○ Provides much more combinations of interactions than available in experimental pockets.

● Ability to integrate protein dynamics
○ Incorporation of processed MD trajectories



ArtiDock performance: Astex dataset
● Astex is a standard 

dataset for docking 
benchmarks

● An older set created 
before the AI hype

● Considered not 
particularly 
challenging for AI 
methods



ArtiDock performance: PoseBusters dataset
PoseBusters dataset

● DOI: 10.1039/D3SC04185A 
● Includes multiple structure quality 

metrics beyond RMSD
● Designed to ashame AI docking
● Ashamed by the next-gen AI docking 
🙂

PoseBusters versions
● V1 was made public in 2023 in the 

preprint
● V3 published and peer reviewed
● V3 is adjusted in favor of conventional 

docking and against AI even more 
(artificial bias)

● Latest AI models in 2025 seem to be 
overfitted against it!

https://doi.org/10.1039/D3SC04185A


ArtiDock performance
● Outperforms comparable ML 

methods.
● On par with conventional docking.
● Faster than anything else of 

comparable quality.



Detailed comparison with Glide and UniMol
● PB-Valid scores 

dependence on RMSD 
cutoff:

○ ArtiDock and Glide: 
increase

○ Uni-Mol: constant

● Absolute PB-Valid scores:
○ ArtiDock and Glide: 

comparable
○ Uni-Mol: low

● Scores: ArtiDock ~ Glide

● Speed: ArtiDock >> Glide

● Uni-Mol prioritizes RMSD 
but fails miserably on 
PB-Valid



Conclusions
● AI drug discovery techniques are here to 

stay.

● Pharma companies adoption increases.

● Data mining and analysis going to be 
dominated by LLMs.

● Progressive substitution of the 
“physics-based techniques” by “data 
driven” ones (will docking finally die for 
good?)

● Data is a new oil (but nobody wants to 
collect and curate it)




